Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.1.73

Impact of Solution-Processed BCP Buffer Layer on Efficient Perovskite Solar Cells  

Jung, Minsu (School of Chemical & Environmental Engineering, Dong-Eui University)
Choi, In Woo (Ulsan Advanced Energy Technology R & D Center, Korea Institute of Energy Research)
Kim, Dong Suk (Ulsan Advanced Energy Technology R & D Center, Korea Institute of Energy Research)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.1, 2021 , pp. 73-77 More about this Journal
Abstract
Inorganic-organic hybrid perovskite solar cells have demonstrated considerable improvements, reaching 25.5% of certified power conversion efficiency in 2020 from 3.8% in 2009. In normal structured perovskite solar cells, TiO2 electron-transporting materials require heat treatment process at a high temperature over 450℃ to induce crystallinity. Inverted perovskite solar cells have also been studied to exclude the additional thermal process by using [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a non-oxide electron-transporting layer. However, the drawback of the PCBM layer is a charge accumulation at the interface between PCBM and a metal electrode. The impact of bathocuproin (BCP) buffer layer on photovoltaic performance has been investigated herein to solve the problem of PCBM. 2-mM BCP-modified perovskite solar cells were observed to exhibit a maximum efficiency of 12.03% compared with BCP-free counterparts (5.82%) due to the suppression of the charge accumulation at the PCBM-Au interface and the resulting reduction of the charge recombination between perovskite and the PCBM layer.
Keywords
Solar cells; Perovskites; Buffer layer; Bathocuproin; Charge recombination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). [DOI: https://doi.org/10.1021/ja809598r]   DOI
2 NERL, Best Research-cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf (2020).
3 M. Jung and S. I. Seok, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 118 (2020). [DOI: https://doi.org/10.4313/KEM.020.33.2.118]   DOI
4 G. Kim, H. Min, K. S. Lee, D. Y. Lee, S. M. Yoon, and S. I. Seok, Science, 370, 108 (2020). [DOI: https://doi.org/0.1126/science.abc4417]   DOI
5 M. Jung, T. J. Shin, J. Seo, G. Kim, and S. I. Seok, Energy Environ. Sci., 11, 2188 (2018). [DOI: https://doi.org/10.1039/8EE00995C]   DOI
6 C. Chen, S. Zhang, S. Wu, W. Zhang, H. Zhu, Z. Xiong, Y. Zhang, and W. Chen, RSC Adv., 7, 35819 (2017). [DOI: https://doi.org/10.1039/c7ra06365b]   DOI
7 N. Shibayama, H. Kanda, T. W. Kim, H. Segawa, and S. Ito, APL Mater., 7, 031117 (2019). [DOI: https://doi.org/10.1063/1.087796]   DOI
8 Y. Wang, J. Zhang, Y. Wu, Z. Yi, F. Chi, H. Wang, W. Li, Y. Zhang, X. Zhang, and L. Liu, Semicond. Sci. Technol., 34, 075023 (2019). [DOI: https://doi.org/10.1088/1361-6641/b2309]   DOI
9 X. Zhang, C. Liang, M. Sun, H. Zhang, C. Ji, Z. Guo, Y. Xu, F. Sun, Q. Song, and Z. He, Phys. Chem. Chem. Phys., 20, 7395 (2018). [DOI: https://doi.org/10.1039/C8CP00563J]   DOI
10 Z. Q. Zhao, S. You, J. Huang, L. Yuan, Z. Y. Xiao, Y. Cao, N. Cheng, L. Hu, J. F. Liu, and B. H. Yu, J. Mater. Chem. C, 7, 9735 (2019). [DOI: https://doi.org/10.1039/C9TC03259B]   DOI
11 J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, and S. I. Seok, Energy Environ. Sci., 7, 2642 (2014). [DOI: https://doi.org/10.1039/C4EE01216J]   DOI