• Title/Summary/Keyword: Organic substrates

Search Result 626, Processing Time 0.032 seconds

Electrical Characteristics of Organic Thin Film Transistors with Dual Layer Insulator on Plastic Substrates (이중 절연막 구조를 가전 플라스틱 유기 박막트랜지스터의 전기적 특성)

  • 최승진;이인규;박성규;김원근;문대규
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.194-197
    • /
    • 2002
  • Applying dual layer insulator on plastic substrates improved electrical characteristics of organic thin film transistor(TFT). A high-quality silicon dioxide(SiO$_2$) suitable for a insulator was deposited on plastic substrates by e-beam evaporation at 110$^{\circ}C$. The insulator film which was treated by N$_2$ annealing at 150$^{\circ}C$ showed excellent I-V, C-V characteristics. The dual layer insulator structure of polyimide-SiO$_2$ improved the roughness of SiO$_2$ surface and showed very low leakage current. In addition, the flat band voltage has been reduced from -2.5V to about 0.5V.

  • PDF

Effects of Various Bed Soil Substrates on the Growth and Yield of 2-Year-Old Ginseng Grown in the Closed Plastic House (폐쇄형 하우스를 이용한 인삼 재배에서 상토의 조성이 2년 근 인삼의 생육 및 수량에 미치는 영향)

  • Choi, Jae-Eul;Lee, Nu-Ri;Jo, Seo-Ri;Kim, Jung-Sun;Choi, Yeong-Kyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.217-221
    • /
    • 2012
  • This research was conducted to investigate the influence of various organic substrates on growth and yield of ginseng seedling grown organically in the closed plastic house. The pH and EC of substrates used for organically ginseng cultivation ranged 5.93~6.78 and 0.03~0.15 dS/m respectively. The concentrations $NH_4$-N and $NO_3$-N respectively was 14.01~68.63 mg/L, 5.60~58.83 mg/L. The average quantum of the closed plastic house was range from 10 to 16% of natural light. In July and August, the maximum temperature of the closed plastic house did not exceed 30 and the average temperature was maintained within 25 lower than the field because air conditioning ran. The PPV-1 and PPV-2 bed soil substrates produced higher stem length, stem diameter, shoot fresh weight and leaf area than those of conventional culture. In PPV-2 bed soil substrates, root fresh weight and root diameter was the highest. The root fresh weight of PPV-2 bed soil substrates in closed plastic house was maximum 25% heavier than the conventional cultivation. The results of this experiment will be utilized for making new substrate application for organic ginseng culture in the plastic house.

Determination of Physical Chemical Properties of Organic and Inorganic Substrates for Horticulture by European Standard Method (유럽표준배지분석법에 의한 원예용 유기·무기성 배지의 물리화학적 특성)

  • Kang, Ji-Young;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.143-148
    • /
    • 2004
  • Organic and inorganic substrates commonly used in Korea include peat moss, coir, bark, rice hull, saw dust, perlite, vermiculite, rockwool granulate, clay ball, and so on. The objective of this study was to get analytical results about the physical and chemical properties of these substrates by European standard methods. Organic substrates showed different properties depending on the type, origin and manufacturing processes. Inorganic substrates showed different properties depending on the type and particle size. Further study on physical and chemical properties for more raw materials and commercially available growing media analyzed by European standard method and comparison of the results with those by Korean standard method is needed.

Synthesis of an Aspartame Precursor Using Thermolysin in Organic Two-Phase System (유기용매 이상계에서 Thermolysin에 의한 아스파탐 전구체 생산)

  • 이인영;안경섭;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 1992
  • The synthesis of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester(ZAPM), a precursor of aspartame, from N-benzyloxycarbonyl-L-aspartic acid(Z-Asp) and L-phenylalanine methyl ester hydrochloride(L-PM-HCl) was investigated in ethylacetate-MES buffer two-phase system using thermolysin. In organic two-phase system, the degree of spontaneous hydrolysis of L-PM. HCl was significantly reduced with increasing the volume ratio of organic to aqueous phase. Stability of thermolysin in organic two-phase system was found to be higher than that in MES buffer solution. More than 90% of initial enzyme activity was maintained after 10 days of incubation in case that the volume of organic phase was equal to that of buffer phase, while the half life of thermolysin was about 2 days in aqueous buffer solution. The results of partitioning of substrates and product in organic two-phase system showed that the difference in partition coefficients between substrates and product was maximum at pH 5.5. The optimal pH for 2-APM synthesis in organic two-phase system was found to be 5.5-5.8, which is consistent with the value expected from the partition experiments. As the concentration of substrates was increased the conversion yield of Z-APM was increased with concomitant reduction of L-PMqHC1 hydrolysis. In case that the concentration of L-PM-HCl and Z-Asp were 160 mM and 80 mM respectively, the conversion yield of Z-APM reached 90% after 28 hrs of reaction. The yield obtained at different volume ratio of organic phase compares well with the predicted equilibrium constant in biphasic system.

  • PDF

Microwave Remediation of Soils Contaminated by Volatile Organic Chemicals (마이크로파에 의한 휘발성 유기토양오염물질 제거에 관한 연구)

  • 문경환;김우현;이병철;김덕찬
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.116-122
    • /
    • 1996
  • This study has been focused on the applicability of microwave treatment of soil contaminated by volitile organic chemicals. Substrates studied were sand and sandy soil. These substrates were impregnated with toluene, tetrachloroethylene, o-xylene and p-dichlorobenzene. The microwave treatment was conducted in a modified domestic microwave oven: 2450 MHz, 700 W. The sandy soil temperature added water went up rapidly to about 130$\circ$C for 4 minutes. And then, the temperature appeared to plateau out. A series of tests were performed to depict the effectiveness of microwave treatment technique to organic contaminants from soils. Removal efficiencies in sandy soil and sand were increased with increasing water content and exposure time. Microwave radiation penetrates the soil and heats water throughout the matrix. Therefore, addition of a certain amount of water to the contaminated soil can efficiently enhance the ability of the soil to absorb microwave energy and promote the evaporation of the volitile contaminants. And the vapour pressure of impregnated organic contaminants becomes lower. the removal efficiency becomes poor.

  • PDF

Fabrication of Organic Nanowire Electronics by Direct Printing Method

  • Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.563-563
    • /
    • 2012
  • We report a one-step fabrication of single-crystal organic nanowire arrays on substrates using a new direct printing method (liquid-bridge-mediated nanotransfer moulding, LB-nTM), which can simultaneously enable the synthesis, alignment and patterning of the nanowires using molecular ink solutions. Two- or three-dimensional complex structures of various single-crystal organic nanowires were directly fabricated over a large area with a successive process. The position of the nanowires can be aligned easily on complex structures because the mold is movable on substrates before drying the polar liquid layer, which acts as an adhesive lubricant. This efficient manufacturing method can produce a wide range of optoelectronic devices and integrated circuits with single-crystal organic nanowires.

  • PDF

[ ${\beta}-cyclodextrin$ ] inclusion properties with guest molecules using hetero-bi-functional reactive dye

  • Kim, Byung-Soon;Kim, Young-Sung;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.32-35
    • /
    • 2007
  • Cyclodextrin is a cyclic oligosaccharid material which shows an ability to incorporate organic guest molecules inside their cavity area. Thus, this ${\beta}-cyclodextrin$ treatment on fiber substrates may provide the changed surface characteristics of the substrates such as solubility, chemical reactivity and spectral property. In this context, the aim of this present work is to make a bridge connection using hetero-bi-functional reactive dye between fiber substrates and ${\beta}-cyclodextrin$. In addition, the corresponding Berberine inclusion behaviors into the inner cavity of ${\beta}-cyclodextrin$ was examined. The %exhaustion of Berberine inclusion as a guest molecule within the ${\beta}-cyclodextrin$ was measured using UV-Vis spectrophotometer. The findings showed that the %exhaustion of Berberine inclusion increased with increasing the prepared dye bridge compound and ${\beta}-cyclodextrin$ host material.

Fabrication of Screen Printed Organic Thin-Film Transistors

  • Yu, Jong-Su;Jo, Jeong-Dai;Kim, Do-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.629-632
    • /
    • 2008
  • Printed organic thin-film transistors (OTFTs) were used in the fabrication of a screen- printed gate, source and drain electrodes on flexible plastic substrates using silver pastes, a coated polyvinylphenol dielectrics, and jetted bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) organic semiconductor. The OTFTs printed using screen printing and soluble processes made it was possible to fabricate a printed OTFT with a channel length as small as $13\;{\mu}m$ on plastic substrates; this was not possible using previous traditional printing techniques.

  • PDF

Influence of Various Substrates on the Growth and Yield of Organically Grown Ginseng Seedlings in the Shaded Plastic House (상토의 물리.화학성이 시설하우스 묘삼의 생육에 미치는 영향)

  • Choi, Jae-Eul;Lee, Nu-Ri;Han, Jin-Soo;Kim, Jeong-Sun;Jo, Seo-Ri;Shim, Chang-Yong;Choi, Jong-Myung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.6
    • /
    • pp.441-445
    • /
    • 2011
  • This research was conducted to investigate the influence of variouis organic substrates on growth and yield of organically grown ginseng seedlings in a shaded plastic house. In the investigation of optimal substrate, the eight substrate were formulated by adjusting blending rate of peatmoss, perlite, coir dust(coco peat), and vermiculite. Then, the changes in physico chemical properties of root substrates as well as their influences on the growth characteristics and yield were determined at six months after sowing. The elevation of the blending rate of peatmoss from 50% to 70% with decrease in the rate of inorganic component (mixture of perlite and vermiculite) from 50 to 30% resulted in the increase in container capacities and decrease in total porosities and air-filled capacities. The concentrations of $NH_4-N$, $P_2O_5$ and K increased as the incorporation rate of castor seed meal, phosphate ore, and langbenite, respectively, were elevated during the root medium formulations. The PPV-1 and PPV-4 substrates produced high stem length, stem diameter, shoot fresh weight, leaf area and root length among eight substrate. Root fresh weight was heaviest in PPV-4 compound nursery media. The results of this experiment will be utilized in the new substrate application for ginseng organic culture in shaded vinyl house.

Interfacial Microstructures between Ag Wiring Layers and Various Substrates (Ag 인쇄배선과 이종재료기판과의 접합계면)

  • Kim, Keun-Soo;Suganuma, Katsuaki;Huh, Seok-Hwan
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.90-94
    • /
    • 2011
  • Ag metallic particles from nano-scale to submicron-scale are combined with organic solvent to provide fine circuits and interconnection. Ink-jet printing with Ag nano particle inks demonstrated the potentials of the new printed electronics technology. The bonding at the interface between the Ag wiring layer and the various substrates is very important. In this study, the details of interfaces in Ag wiring are investigated primarily by microstructure observation. By adjusting the materials and sintering conditions, nicely formed interfaces between Ag wiring and Cu, Au or organic substrates are achieved. In contrast, transmission electron microscope (TEM) image clearly shows interface debonding between Ag wiring and Sn substrate. Sn oxides are formed on the surface of the Sn plating. The formation of these is a root cause of the interface debonding.