• Title/Summary/Keyword: Organic matter production

Search Result 785, Processing Time 0.034 seconds

Effects of Nitrogen Fertilization Increment on Forage Crops Cultivation in Saemangum Reclaimed Land (새만금간척지 사료작물 재배시 질소증비 효과)

  • Yang, Chang-Hyu;Kim, Sun;Lee, Jang-Hee;Baek, Nam-Hyun;Kim, Taek-Kyum;Choi, Weon-Young;Jeong, Jae-Hyuk;Lee, Sang-Bok;Lee, Gyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.235-240
    • /
    • 2012
  • This study was conducted to find out the optimum cropping system for the stable production of forage crops in the newly reclaimed land located at Gwanghwal region of Saemangum reclaimed land in which the soil is sandy loam (Munpo series). There were two treatments of nitrogen fertilization 20% increment based on the standard fertilization of 150, $200kg\;ha^{-1}$. Whole crop barley as the winter crop sowed on 27 October. After the whole crop barley was harvested at the end of May. Corn and sorghum${\times}$sudangrass as the summer crop sowed at the early of June successively on the same field. Emergence rate the whole crop barley was high while the summer crops were low. Soil salinity was increased during cultivation of summer crops. However, corn and sorghum${\times}$sudangrass were not damaged by salt. Increase of nitrogen fertilization made the growth of cultivation crops good, stem and leaf tended to have a lot of the mineral nutrients at heading stage and silking stage. After experiment, among soil chemical properties pH, content of exchangeable sodium were decreased and content of organic matter, available phosphate were increased. Dry matter yield were showed whole crop barley $13,170kg\;ha^{-1}$ and sorghum${\times}$sudangrass $19,440kg\;ha^{-1}$ by increment of nitrogen fertilization. Therefore, to improve the product and nutrient balance of reclaimed saline land comprehensive soil management should be considered.

Effect of Dietary Concentrate:forage Ratios and Undegraded Dietary Protein on Nitrogen Balance and Urinary Excretion of Purine Derivatives in Dorper×thin-tailed Han Crossbred Lambs

  • Ma, Tao;Deng, Kai-Dong;Tu, Yan;Jiang, Cheng-Gang;Zhang, Nai-Feng;Li, Yan-Ling;Si, Bing-Wen;Lou, Can;Diao, Qi-Yu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.2
    • /
    • pp.161-168
    • /
    • 2014
  • This study aimed to investigate dietary concentrate:forage ratios (C:F) and undegraded dietary protein (UDP) on nitrogen balance and urinary excretion of purine derivatives (PD) in lambs. Four Dorper${\times}$thin-tailed Han crossbred castrated lambs with $62.3{\pm}1.9$ kg body weight at 10 months of age were randomly assigned to four dietary treatments in a $2{\times}2$ factorial arrangement of two levels of C:F (40:60 and 60:40) and two levels of UDP (35% and 50% of CP), according to a complete $4{\times}4$ Latin-square design. Each experimental period lasted for 19 d. After a 7-d adaptation period, lambs were moved into individual metabolism crates for 12 d including 7 d of adaption and 5 d of metabolism trial. During the metabolism trial, total urine was collected for 24 h and spot urine samples were also collected at different times. Urinary PD was measured using a colorimetric method and creatinine was measured using an automated analyzer. Intake of dry matter (DM) (p<0.01) and organic matter (OM) (p<0.01) increased as the level of UDP decreased. Fecal N was not affected by dietary treatment (p>0.05) while urinary N increased as the level of UDP decreased (p<0.05), but decreased as dietary C:F increased (p<0.05). Nitrogen retention increased as dietary C:F increased (p<0.05). As dietary C:F increased, urinary excretion of PD increased (p<0.05), but was not affected by dietary UDP (p>0.05) or interaction between dietary treatments (p>0.05). Daily excretion of creatinine was not affected by dietary treatments (p<0.05), with an average value of $0.334{\times}0.005$ mmol/kg $BW^{0.75}$. A linear correlation was found between total PD excretion and PDC index ($R^2$ = 0.93). Concentrations of creatinine and PDC index in spot urine were unaffected by sampling time (p>0.05) and a good correlation was found between the PDC index (average value of three times) of spot urine and daily excretion of PD ($R^2$ = 0.88). These results suggest that for animals fed ad libitum, the PDC index in spot urine is effective to predict daily excretion of PD. In order to improve the accuracy of the spot sampling technique, an appropriate lag phase between the time of feeding and sampling should be determined so that the sampling time can coincide with the peak concentration of PD in the urine.

Study on Cropping System and Nitrogen Fertilizers of Whole Crop Barley and Leguminous Crop for Production of Good Quality Forage (양질 조사료 생산을 위한 청보리와 콩과 작물의 작부체계 및 질소 시비량에 관한 연구)

  • Kim, Dae-Ho;Kang, Dal-Soon;Moon, Jin-Young;Shin, Hyun-Yul;Shon, Gil-Man;Rho, Chi-Woong;Kim, Jung-Gon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.197-210
    • /
    • 2009
  • To improve the forage quality and reduce nitrogen input, trial was conducted on the effect of seeding method, combination, and nitrogen fertilizer with WCB (whole crop barley) and leguminous plant. Present experiment was carried out by split-split design having seeding methods for main plot, combinations for sub-plot, and nitrogen fertilizers for sub-sub plot with three replications. When WCB and leguminous plant were mixed-sown, WCB showed earlier heading and maturing than those of inter-sown, and the more nitrogen delayed growth stage a little. Occurrence of BaYMV (Barley Yellow Mosaic Virus), a serious disease caused by soil fungi and decrease barley yield, was deterred by mixed-seeding as compared to inter-sown barley a little. Inter-sown WCB increased the number of spike per $m^2$ as compared to mixed-seeding showing more spikes with nitrogen increase. WCB produced much fresh and dry matter yield at mixed-seeding than inter-seeding, and had advantage with hairy vetch (HV). Increased nitrogen showed much forage yield, however, half application of it is considerable for environmental-friendly farming. Electric conductivity (EC) decreased in inter-cropping or mixed-sowing soil with WCB and leguminous crop after harvest. But, organic matter (OM) content of soil after harvesting was vice versa. Acid detergent fiber (ADF) and Neutral detergent fiber (NDF) of WCB plant were higher at mixed-seeding than those of inter-sown ones. It showed increased tendency with time progress.

Effects of Protein and Carbohydrate Supplements on Feed Digestion in Indigenous Malaysian Goats and Sheep

  • Darlis, N. Abdullah;Halim, R.A.;Jalaludin, S.;Ho, Y.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.4
    • /
    • pp.464-469
    • /
    • 2000
  • Experiments were conducted to determine the effects of soybean meal (SBM) as a source of protein and sago meal (SM) as a source of carbohydrate on in situ and in vivo digestibility of dietary components in four male goats (Kambing Katjang) and four male sheep (Malin) weighing 25-35 kg. Rumen volume, as well as rumen fluid dilution rate were also determined. The animals were housed in single pens with individual feeding and drinking troughs and each animal was fitted with a rumen fistula. They were fed two diets : chopped rice straw+200 g soybean meal (SBM), and chopped rice straw+190 g soybean meal+300 g sago meal (SBM+SM). Rice straw was offered ad libitum. The supplements were isonitrogenous (80 g crude protein/animal/d), but the proportions of dry matter (DM), organic matter (OM), crude fibre (CF), neutral detergent fibre (NDF) and acid detergent fibre (ADF) were lower in the SBM supplement (191, 165, 11, 40, 15 g/animal/d for DM, OM, CF, NDF and ADF, respectively) than in the SBM+SM supplement (445, 423, 25, 102, 38 g/animal/d for DM, OM, CF, NDF and ADF, respectively). Two animals from each species were fed either supplement in a cross-over design in two periods. Each period lasted for four weeks. In situ and in vivo digestibility studies were carried out, followed by the determination of rumen volume and rumen fluid dilution rate. The results showed that straw DM and total DM intakes of goats (average of $48.7g/kg\;W^{0.75}$, $72.7g/kg\;W^{0.75}$, respectively) were significantly (p<0.01) higher than sheep (average of $3.56g/kg\;W^{0.75}$, $61.6g/kg\;W^{0.75}$, respectively), but OM, N and GE intakes were not significantly different between the two animal species. When the effect of supplements was compared, animals fed SBM+SM supplement had significantly (p<0.001) higher DM, OM and GE intakes than animals fed SBM supplement. Potential degradabilities of rice straw DM were significantly (p<0.01) higher in goats (average of 48.8%) than in sheep (average of 46.1 %). The supplements had no significant effect on the potential degradabilities of DM, OM and NDF, but they had a significant (p<0.05) effect on the degradation rates of DM and NDF. The addition of sago meal in the diet reduced the degradation rates of DM and NDF of rice straw in the rumen. Potential degradability of DM of soybean meal was not significantly different between animal species as well as between supplements. Sago meal was highly degradable. At 24 h of incubation in the rumen, 90-95% of DM loss was observed. There was a significant interaction between animal species and supplements in the in vivo digestibility of ADF and GE. In animals fed SBM supplement, the in vivo digestibility of ADF was significantly (p<0.05) higher in goats ($50.6{\pm}4.22%$) than in sheep ($44.4{\pm}3.21%$), but digestibility of GE was significantly (p<0.05) higher in sheep ($70.2{\pm}1.93%$) than in goats ($63.0{\pm}3.07%$). The digestibility values of CP and OM were significantly (p<0.05) higher in sheep when compared to goats. Animals fed SBM+SM supplement showed significantly (p<0.05) higher DM and OM digestibility values than animals fed SBM supplement, but digestibility values of CP were significantly (p<0.05) higher in animals fed SBM supplement. Differences in in vivo digestibility values of CF and NDF were not significantly different between animal species or supplements. Water intake, rumen volume ($1/kg\;W^{0.75}$), rumen fluid dilution rate and mean retention time were similar between the two animal species. However, rumen fluid dilution rate and mean retention time was significantly (p<0.01) affected by supplements. Animals fed SBM+SM had faster rumen fluid dilution rate and consequently shorter mean retention time.

The Effect of Liquid Pig Manure on Yield of Several Forage Crops and Soil Chemical Properties (돈분액비 시용이 동·하계 사료작물의 수량 및 토양의 화학적 특성에 미치는 영향)

  • Cho, Kwang-Min;Lee, Sang-Bok;Back, Nam-Hyun;Yang, Chang-Hyu;Shin, Pyung;Lee, Kyeong-Bo;Park, Ki-Hoon;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.323-331
    • /
    • 2013
  • BACKGROUND: Liquid pig manure(LPM) is a useful resource if it is sufficiently fermented and utilized in the agriculture; it provides nutrients to soils, circulates organic materials and replaces chemical fertilizers(CF) with reasonable costs. Currently, there are not many trials in paddy field to continuously cultivate the crops in winter and summer season using LPM. METHODS AND RESULTS: When cultivating winter forage crops (Whole-crop-barley(WCB), Rye, Triticale, Italian ryegrass(IRG)) and summer feed corns in the rice field, CF was treated with $N-P_2O_5-K_2O$(winter forage crops: 120-100-100kg/ha, summer feed corn: 200-150-150 kg/ha), and subsequently, growth, yields, feed values and chemical properties of soil were investigated. LPM-applied areas in both winter and summer forage crops showed higher plant lengths and tillers than those of CF-applied areas, but the yield in CF-applied areas was higher than that of LPM-applied areas under continuous application of 2 years. Crude protein, neutral detergent fiber(NDF), acid detergent fiber(ADF) and total digestion nutrient(TDN) in feed values showed almost similar results between LPM and CF-applied areas. EC, organic matter, available phosphate and exchangeable cations of soils after the experiment increased in LPM applied areas, and especially, the contents of available phosphate and exchangeable sodium were high. CONCLUSION(S): Considering the above results, it was concluded that if LPM are properly utilized for continuous winter and summer cultivation of feed crops at paddy field, the cultivation costs could be decreased and be helpful to the stable production of domestic feeds.

Electricity Production Performance of Single- and Dual-cathode Microbial Fuel Cells Coupled to Carbon Source and Nitrate (Single-cathode와 Dual-cathode 미생물연료전지의 탄소원과 질산성질소의 전류발생 특성)

  • Jang, Jae-Kyung;Lee, Eun-Young;Ryou, Young-Sun;Lee, Sung-Hyoun;Hwang, Ji-Hwan;Lee, Hyung-Mo;Kim, Jong-Goo;Kang, Youn-Koo;Kim, Young-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.382-386
    • /
    • 2011
  • Microbial fuel cells (MFC), devices that use bacteria as a catalyst to generate electricity, can utilize a variety of organic wastes as electron donors. The current generated may differ depending on the organic matter concentrations used, when other conditions, such as oxidant supply, proton transfer, internal resistance and so on, are not limiting factors. In these studies, a single-cathode type MFC (SCMFC) and dual-cathode type MFC (DCMFC) were used to ascertain the current's improvement through an increase in the contact area between the anode and the cathode compartments, because the cathode reaction is one of the most serious limiting factors in an MFC. Also an MFC was conducted to explore whether an improvement in electricity generation resulted from oxidizing the carbon sources and nitrates. About 250 mg $L^{-1}$ sodium acetate was fed to an anode compartment with a flow rate of 0.326 mL $min^{-1}$ by continuous mode. The current generated from the DCMFC was higher than the value produced from MFC with a single cathode. COD removal of dual-cathode MFC was also higher than that of single-cathode MFC. The nitrate didn't affect current generation at 2 mM, but when 4 and 8 mM nitrate was supplied, the current in the single-cathode and dual-cathode MFC was decreased by 98% from $5.97{\pm}0.13$ to $0.23{\pm}0.03$ mA and $8.40{\pm}0.23$ to $0.20{\pm}0.01$ mA, respectively. These results demonstrate that increasing of contact area of the anode and cathode can raise current generation by an improvement in the cathode reaction.

Influence of Organic Acids Residual Concentration by the Change of F/M Ratio on Sludge Settleability in Advanced Sewage Treatment Processes (하.폐수 고도처리시 F/M비 변화에 따른 유기산 잔류 농도가 슬러지 침강성에 미치는 영향)

  • Park, Young-Ki;Kim, Young-Il;Kim, Sl-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • The biological nutrient treatment is formed with repetition and rearrangement of anaerobic, anoxic and oxic tank. In this case, VFAs is generated in the anaerobic tank and the anoxic tank. The VFAs is an important factor for removal of nitrogen and phosphate and SVI. So, in this study I investigated to find a relationship among the generation rate of the VFAs according to the change of F/M ratio and the characteristic which can eliminate organic matter and nitrogen according to the change of residual concentration of the VFAs and the efficiency of the process and also SVI in wastewater treatment. $A^2/O$ process was used for wastewater treatment. F/M ratio was under the control of the change of MLSS concentration. When the F/M ratio was changed from 0.16 to 0.08 kg-BOD/kg-MLSS/day, the VFAs's production volume increased based on the reduction of F/M ratio in batch reaction. And the residual concentration of the VFAs decreased at first and then increased later. SVI and SS were high when F/M ratio was $0.16kg/kg{\cdot}d$ and showed stable status when F/M ratio decreased $0.11{\sim}0.13kg/kg{\cdot}d$. However, SVI and SS continuously increased with decrease of F/M ratio and were high at $0.08kg/kg{\cdot}d$. In the result of comparison between residual concentration of the VFAs and denitrification rate in anoxic tank, the less residual volume of the VFAs was in anoxic tank, the higher denitrification ratio became. The optimal residual-concentration of the VFAs considering SVI and removal efficiency of nitrogenwas $1.4{\sim}2.2mg/L$. At that time F/M ratio was $0.11{\sim}0.13$ kg-BOD/kg-MLSS/day.

Performance of Upflow Anaerobic Bioelectrochemical Reactor Compared to the Sludge Blanket Reactor for Acidic Distillery Wastewater Treatment (상향류식 혐기성 슬러지 블랭킷 반응조에 비교한 생물전기화학 반응조의 산성 주정폐수처리성능)

  • Feng, Qing;Song, Young-Chae;Yoo, Kyuseon;Lal, Banwari;Kuppanan, Nanthakumar;Subudhi, Sanjukta
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.279-290
    • /
    • 2016
  • The performance of upflow anaerobic bioelectrochemical reactor (UABE), equipped with electrodes (anode and cathode) inside the upflow anaerobic reactor, was compared to that of upflow anaerobic sludge blanket (UASB) reactor for the treatment of acidic distillery wastewater. The UASB was stable in pH, alkalinity and VFAs until the organic loading rate (OLR) of 4.0 g COD/L.d, but it became unstable over 4.0 g COD/L.d. As a response to the abrupt doubling in OLR, the perturbation in the state variables for the UABE was smaller, compared to the UASB, and quickly recovered. The UABE stability was better than the UASB at higher OLR of 4.0-8.0 g COD/L.d, and the UABE showed better performance in specific methane production rate (2,076mL $CH_4/L.d$), methane content in biogas (66.8%), and COD removal efficiency (82.3%) at 8.0 g COD/L.d than the UASB. The maximum methane yield in UABE was about 407mL/g $COD_r$ at 4.0 g COD/L.d, which was considerably higher than about $282mL/g\;COD_r$ in UASB. The rate limiting step for the bioelectrochemical reaction in UABE was the oxidation of organic matter on the anode surface, and the electrode reactions were considerably affected by the pH at 8.0 g COD/L.d of high OLR. The maximum energy efficiency of UABE was 99.5%, at 4.0 g COD/L.d of OLR. The UABE can be an advanced high rate anaerobic process for the treatment of acidic distillery wastewater.

Food Sources of the Ascidian Styela clava Cultured in Suspension in Jindong Bay of Korea as Determined by C and N Stable Isotopes (탄소 및 질소안정동위원소 조성에 의한 남해안 진동만 양식 미더덕의 먹이원 평가)

  • Moon, Changho;Park, Hyun Je;Yun, Sung Gyu;Kwak, Jung Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • To examine the trophic ecology of the ascidian Styela clava in an aquaculture system of Korea, stable carbon and nitrogen isotopes were analyzed monthly in S. clava, coarse ($>20{\mu}m$, CPOM) and fine particulate organic matters ($0.7<<20{\mu}m$, FPOM). CPOM (means: $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰) were significantly higher ${\delta}^{13}C$ and ${\delta}^{15}N$ values than those ($-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰) of FPOM. S. clava had mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of $-18.9({\pm}1.7)$‰ and $11.6({\pm}0.7)$‰, respectively. S. clava were more similar to seasonal variations in ${\delta}^{13}C$ and ${\delta}^{15}N$ values of FPOM than those of CPOM, suggesting that they rely largely on the FPOM as a dietary source. In addition, our results displayed that the relative importance between CPOM and FPOM as dietary source for the ascidians can be changed according to the availability of each component in ambient environment, probably reflecting their feeding plasticity due to non-selective feeding irrespective of particle size. Finally, our results suggest that dynamics of pico- and nano-size plankton (i.e., FPOM) as an available nutritional source to S. clava should be effectively assessed to maintain and manage their sustainable aquaculture production.

Effect of amendments and their causes of rice yield increase in ill drained paddy soil (습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究))

  • Park, Chon Suh;Song, Jae Ha;Kim, Yung Sup;Lee, Chung Young;Choh, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1971
  • In order to establish the method of improving ill drained paddy soil where the accumulation of absorption inhibitor is worried in the earlier stages of rice growth, proper soil is selected and an field experiment is designed having treatments such as lime materials, none sulfate fertilizers, boron and straw etc. The data of yield and plant analysis in different stages of rice growth is eveluated and discussed to obtain following summaries. (1) Significant yield increase was made by the treatment of lime materials such as slacked lime or wollastonite powder, materials inhibiting the activity of microorganisms such as boron and of none sulfate fertilizers lacking inhibitor producing sources. (2) The crop scientifice causes of decreasing yield are the decreasing the number of panicles per hill, grains per panicle and the weight of grains. (3) The plant nutritional causes of decreasing yield are the lowering of nitrogen content throughout the life, phosphate content since young premodia formation stage of plant and the decreased content of magnesium, calcium and silicate in straw at harvesting stage. (4) The causes of lowering the content of various elements in rice plant grown in ill drained paddy soil are suggested as root damage by producing and accumulating absorption inhibitors such as organic acids and hydrogen sulfide etc, from the following observed facts; (a) In young premodia formation stage, attaining to the maximum production and accumulation of absorption inhibitor, the phosphate accumulation in plant was smaller in the phosphate plots than without phosphate plots and much higher in the neutralized plots by adding lime materials. (b) In the plots of straw addition, the potassium content in plant at the young premodia formation stage is very low probabley due to root damage by absorption inhibitor produced from the process of straw decomposition but higher at the stage of harvesting probably due to the immetabolic negative absorption of damaged roots. (c) The effect of boron, known as the inhibitor of microorganism activity to decompose organic matter, is apparent. (d) The effect of nonsulfate fertilizer treatment, having no source of producing inhibitor such as hydrogen sulfide, was significant. (e) All the yield components, decided around the young premodia formation stage attaining to the maximum inhibitor concentration in soil and minimum root activity, are significantly decreased.

  • PDF