DOI QR코드

DOI QR Code

Performance of Upflow Anaerobic Bioelectrochemical Reactor Compared to the Sludge Blanket Reactor for Acidic Distillery Wastewater Treatment

상향류식 혐기성 슬러지 블랭킷 반응조에 비교한 생물전기화학 반응조의 산성 주정폐수처리성능

  • Feng, Qing (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Yoo, Kyuseon (Department of Civil & Environmental Engineering, Jeonju University) ;
  • Lal, Banwari (Environmental and Industrial Division, The Energy and Resources Institute) ;
  • Kuppanan, Nanthakumar (Environmental and Industrial Division, The Energy and Resources Institute) ;
  • Subudhi, Sanjukta (Environmental and Industrial Division, The Energy and Resources Institute)
  • Received : 2016.03.18
  • Accepted : 2016.04.11
  • Published : 2016.06.30

Abstract

The performance of upflow anaerobic bioelectrochemical reactor (UABE), equipped with electrodes (anode and cathode) inside the upflow anaerobic reactor, was compared to that of upflow anaerobic sludge blanket (UASB) reactor for the treatment of acidic distillery wastewater. The UASB was stable in pH, alkalinity and VFAs until the organic loading rate (OLR) of 4.0 g COD/L.d, but it became unstable over 4.0 g COD/L.d. As a response to the abrupt doubling in OLR, the perturbation in the state variables for the UABE was smaller, compared to the UASB, and quickly recovered. The UABE stability was better than the UASB at higher OLR of 4.0-8.0 g COD/L.d, and the UABE showed better performance in specific methane production rate (2,076mL $CH_4/L.d$), methane content in biogas (66.8%), and COD removal efficiency (82.3%) at 8.0 g COD/L.d than the UASB. The maximum methane yield in UABE was about 407mL/g $COD_r$ at 4.0 g COD/L.d, which was considerably higher than about $282mL/g\;COD_r$ in UASB. The rate limiting step for the bioelectrochemical reaction in UABE was the oxidation of organic matter on the anode surface, and the electrode reactions were considerably affected by the pH at 8.0 g COD/L.d of high OLR. The maximum energy efficiency of UABE was 99.5%, at 4.0 g COD/L.d of OLR. The UABE can be an advanced high rate anaerobic process for the treatment of acidic distillery wastewater.

중화하지 않은 주정폐수를 처리할 때 상향류식 혐기성반응조에 전극을 배치한 생물전기화학반응조의 성능을 UASB 공정과 비교하였다. UASB 공정은 유기물부하율 4.0 g COD/L.d 이하에서 pH, VFA 및 알카리도 등에 있어서 안정한 상태를 유지하였지만, 4.0 g COD/L.d 이상의 유기물부하율에서는 불안정하였다. 그러나, 생물전기화학 반응조는 UASB 반응조에 비하여 유기물부하율 배가시 상태변수들의 변동폭이 작았으며, 빠르게 정상상태로 회복하였다. 생물전기화학 반응조는 4.0-8.0g COD/L.d의 높은 유기물부하율에서 상태변수들이 UASB 반응조에 비하여 안정하였으며, 유기물부하율 8.0 g COD/L.d에서 비메탄발생율(2,076mL $CH_4/L.d$), 바이오가스의 메탄함량(66.8%) 그리고 COD 제거율(82.3%) 등의 측면에서 UASB 반응조보다 우수하였다. 생물전기화학 반응조의 메탄수율은 유기물부하율 4.0 g COD/L.d에서 약 407mL/g $COD_r$로 최대값을 보였으며, 이 값은 UASB의 282mL/g $COD_r$보다 크게 높았다. 중화하지 않은 산성 주정폐수를 처리하는 생물전기화학 반응조의 전극반응에서 율속단계는 산화전극반응이었으며, 전극반응은 높은 유기물부하율에서 pH에 의해서 크게 영향을 받았다. 생물전기화학 반응조는 유기물부하율 4.0 g COD/L.d에서 99.5%의 최대에너지효율을 보였다. 중화하지 않은 산성 주정폐수를 처리하는 생물전기화학 반응조는 UASB 공정보다 진보된 고율 혐기성 기술이 될 수 있다.

Keywords

References

  1. Pant, D. and Adholeya A., "Biological approaches for treatment of distillery wastewater: A review," Bioresour. Technol., 98, 2321-2334(2007). https://doi.org/10.1016/j.biortech.2006.09.027
  2. Bustamante, M. A., Paredes, C., Marhuenda-Egea, F. C., Perez-Espinosa, A., Bernal, M. P. and Moral, R., "Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability," Chemosphere, 72(4), 551-557(2008). https://doi.org/10.1016/j.chemosphere.2008.03.030
  3. Shivayogimath, C. B. and Ramanujam, T. K., "Treatment of distillery spentwash by hybrid UASB reactor," Bioproc. Eng., 21, 255-259(1999). https://doi.org/10.1007/s004490050673
  4. Akarsubasi, A. T., Ince, O., Oz, N. A., Kirdar, B. and Ince, B. K., "Evaluation of performance, acetoclastic methanogenic activity and archaeal composition of full-scale UASB reactors treating alcohol distillery wastewaters," Proc. Biochem., 41(1), 28-35(2006). https://doi.org/10.1016/j.procbio.2005.01.029
  5. Tang, Y., Fujimura, Y., Shigematsu, T., Morimura, S. and Kida, K., "Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating awamori distillery wastewater," J. Biosci. Bioeng., 104(4), 281-287(2007). https://doi.org/10.1263/jbb.104.281
  6. Mohana, S., Acharya, B. K. and Madamwa, D., "Distillery spent wash: Treatment technologies and potential applications," J. Hazard. Mater., 163, 12-25(2009). https://doi.org/10.1016/j.jhazmat.2008.06.079
  7. Goto, M., Nada, T., Ogata, A., Kodama, A. and Hirose, T., "Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses," J. Supercrit. Fluid., 13(1-3), 277-282(1988). https://doi.org/10.1016/S0896-8446(98)00062-X
  8. Garcia-Calderon, D., Buffiere, P., Moletta, R. and Elmaleh, S., "Anaerobic digestion of wine distillery wastewater in downflow fluidized bed," Water Res., 32(12), 3593-3600(1988). https://doi.org/10.1016/S0043-1354(98)00134-1
  9. Harada, H., Uemura, S., Chen, A.-C. and Jayadevan, J., "Anaerobic treatment of a recalcitrant distillery wastewater by a thermophilic UASB reactor," Bioresour. Technol., 55(3), 215-221(1996). https://doi.org/10.1016/0960-8524(96)00003-X
  10. Karhadkar, P. P., Audic, J.-M., Faup, G. M. and Khanna, P., "Sulfide and sulfate inhibition of methanogenesis," Water Res., 21(9), 1061-1066(1987). https://doi.org/10.1016/0043-1354(87)90027-3
  11. Rasool, K. and Lee, D. S., "Effect of ZnO nanoparticles on biodegradation and biotransformation of co-substrate and sulphonated azo dye in anaerobic biological sulfate reduction processes," Int. Biodeter. Biodegr., 109(1), 150-156(2016). https://doi.org/10.1016/j.ibiod.2016.01.015
  12. Kumar, G. S., Gupta, S. K. and Singh, G., "Biodegradation of distillery spent wash in anaerobic hybrid reactor," Water Res., 41(4), 721-730(2007). https://doi.org/10.1016/j.watres.2006.11.039
  13. Ray, S. G. and Ghangrekar, M. M., "Enhancing organic matter removal, biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell," Bioresour. Technol., 176(1), 8-14(2015). https://doi.org/10.1016/j.biortech.2014.10.158
  14. Clauwaert, P. and Verstraete, W., "Methanogenesis in membraneless microbial electrolysis cells," Appl. Microbiol. Biot., 82(5), 829-836(2008). https://doi.org/10.1007/s00253-008-1796-4
  15. Villano, M., Aulenta, F., Ciucci, C., Ferri, T., Giuliano, A. and Majone, M., "Bioelectrochemical reduction of $CO_2$ to $CH_4$ via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture," Bioresour. Technol., 101(9), 3085-3090(2010). https://doi.org/10.1016/j.biortech.2009.12.077
  16. Song, Y. C., Feng, Q. and Ahn, Y. T., "Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times," Energy Fuel., 30(1). 352-359(2016). https://doi.org/10.1021/acs.energyfuels.5b02003
  17. Kim, D. H., Song, Y. C. and Qing, F., "Influence of Applied Voltage for Bioelectrochemical Anaerobic Digestion of Sewage Sludge," J. Korean Soc. Environ. Eng., 37(9), 542-549(2015). https://doi.org/10.4491/KSEE.2015.37.9.542
  18. Zhao, Z., Zhang, Y., Chen, S., Quan X. and Yu, Q., "Bioelectrochemical enhancement of anaerobic methanogenesis for high organic load rate wastewater treatment in a up-flow anaerobic sludge blanket (UASB) reactor," Sci. Rep., 4, 1-8(2014).
  19. Song, Y. C., Choi, T. S., Woo, J. H., Yoo, K., Chung, J. W., Lee, C. Y. and Kim, B., "Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells," J. Appl. Electrochem., 42, 391-398(2012). https://doi.org/10.1007/s10800-012-0410-8
  20. Song, Y. C., Kim, D. S., Woo, J. H., Subha, B., Jang, S. H. and Sivakumar, S., "Effect of surface modification of anode with surfactant on the performance of microbial fuel cell," Int. J. Energy Res., 39, 860-868(2015). https://doi.org/10.1002/er.3284
  21. Yang, L., Huang, Y., Zhao, M., Huang, Z., Miao, H, Xu, Z. and Ruan, W., "Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment," Int. Biodeterior. Biodegrad., 105(11), 153-159(2015) https://doi.org/10.1016/j.ibiod.2015.09.005
  22. Capri, M. G. and Marais, G. v. R., "pH adjustment in anaerobic digestion," Water Res., 9(3), 307-313(1975). https://doi.org/10.1016/0043-1354(75)90052-4
  23. Munch, v. E. and Greenfield, P. F., "Estimating VFA concentration in prefermenters by measuring pH," Water Res., 32(8), 2431-2441(1998). https://doi.org/10.1016/S0043-1354(97)00469-7
  24. Song, Y. C., Kwon, S. J. and Woo, J. H., "Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge," Water. Res., 38, 1653-1662(2004). https://doi.org/10.1016/j.watres.2003.12.019
  25. Sridevi, K., Sivaraman, E. and Mullai, P., "Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor," Bioresour. Technol., 165, 233-240(2014). https://doi.org/10.1016/j.biortech.2014.03.074
  26. Dogan, T., Ince, O., Oz, N. A. and Ince, B. K., "Inhibition of Volatile Fatty Acid Production in Granular Sludge from a UASB Reactor," J. Environ. Sci. Heal. A, 40, 633-644(2005).
  27. Isa, Z., Grusenmeyer, S. and Verstraete, W., "Sulfate Reduction Relative to Methane Production in High-Rate Anaerobic Digestion: Microbiological Aspects," Appl. Environ. Microb., 51(3), 580-587(1986).
  28. Liamleam, W. A. P., "Annachhatrec Electron donors for biological sulfate reduction," Biotechnol. Adv., 25, 452-463(2007). https://doi.org/10.1016/j.biotechadv.2007.05.002
  29. Paula, Jr D. R. and Foresti, E., "Sulfide Toxicity Kinetics of a UASB reactor," Braz. J. Chem. Eng., 26(4), 669-675(2009). https://doi.org/10.1590/S0104-66322009000400005
  30. Jain, P., Sharma, M., Kumar, M., Dureja, P., Singh, M. P., Lal, B. and Sarma, P. M., "Electrochemical removal of sulfate from petroleum produced water," Water Sci. Technol., 72(2), 284-292(2015). https://doi.org/10.2166/wst.2015.217
  31. Kulikovsky, A., "Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell," Energies, 7, 351-364(2014). https://doi.org/10.3390/en7010351
  32. Villano, M., Ralo, C., Zeppilli, M., Aulenta, F. and Majone, M., "Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell," Bioelectrochem., 107, 1-6(2016). https://doi.org/10.1016/j.bioelechem.2015.07.008