• Title/Summary/Keyword: Organic light-emitting diode

Search Result 437, Processing Time 0.03 seconds

Improvement of Permeation of Solvent-free Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET) (고분자 기판위에 유기 용매를 사용하지 않은 다층 박막 Encapsulation 기술 개발)

  • Kang, Hee-Jin;Han, Jin-Woo;Kim, Jong-Yeon;Moon, Hyun-Chan;Choi, Sung-Ho;Park, Kwang-Bum;Kim, Tae-Ha;Kim, Hwi-Woon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.56-57
    • /
    • 2006
  • In this paper, the inorganic multi-layer thin film encapsulation was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Ethylene Terephthalate(PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON SiO2 and parylene layer showed the most suitable properties. Under these conditions, the WVTR for PET can be reduced from a level of $0.57\;g/m^2/day$ (bare subtrate) to 1*10-5 g/$m^2$/day after application of a SiON and SiO2 layer. These results indicates that the PET/SiO2/SiON/Parylene barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

Light and bias stability of c-IGO TFTs fabricated by rf magnetron sputtering

  • Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.265.2-265.2
    • /
    • 2016
  • Oxide thin film transistors (TFTs) have attracted considerable interest for gate diver and pixel switching devices of the active matrix (AM) liquid crystal display (LCD) and organic light emitting diode (OLED) display because of their high field effect mobility, transparency in visible light region, and low temperature processing below $300^{\circ}C$. Recently, oxide TFTs with polycrystalline In-Ga-O(IGO) channel layer reported by Ebata. et. al. showed a amazing field effect mobility of $39.1cm^2/Vs$. The reason having high field effect mobility of IGO TFTs is because $In_2O_3$ has a bixbyite structure in which linear chains of edge sharing InO6 octahedral are isotropic. In this work, we investigated the characteristics and the effects of oxygen partial pressure significantly changed the IGO thin-films and IGO TFTs transfer characteristics. IGO thin-film were fabricated by rf-magnetron sputtering with different oxygen partial pressure ($O_2/(Ar+O_2)$, $Po_2$)ratios. IGO thin film Varies depending on the oxygen partial pressure of 0.1%, 1%, 3%, 5%, 10% have been some significant changes in the electrical characteristics. Also the IGO TFTs VTH value conspicuously shifted in the positive direction, from -8 to 11V as the $Po_2$ increased from 1% to 10%. At $Po_2$ was 5%, IGO TFTs showed a high drain current on/off ratio of ${\sim}10^8$, a field-effect mobility of $84cm^2/Vs$, a threshold voltage of 1.5V, and a subthreshold slpe(SS) of 0.2V/decade from log(IDS) vs VGS.

  • PDF

Improvement of Hysteresis Characteristics of Low Temperature Poly-Si TFTs (저온 Poly-Si TFT 소자의 Hysteresis 특성 개선)

  • Chung, Hoon-Ju;Cho, Bong-Rae;Kim, Byeong-Koo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • Although Active matrix organic light emitting diode (AMOLED) display has a better image quality in terms of viewing angle, contrast ratio, and response time than liquid crystal displays (LCDs), it still has some critical issues such as lifetime, residual images, and brightness non-uniformity due to non-uniformity in electrical characteristics of driving TFTs and IR drops on supplied power line. Among them, we improved irrecoverable residual images of AMOLED displays which is mainly related to the hysteresis characteristics of driving TFTs. We consider four kinds of surface treatment conditions before gate oxide deposition for improving hysteresis characteristics. We can reduce the hysteresis level of p-channel TFT to 0.23 V, interface trap states between the poly-Si layer and gate insulator to $3.11{\times}10^{11}cm^{-2}$, and output current variation of p-channel TFT to 3.65 % through the surface treatment using ultraviolet light and H2 plasma. Therefore, the recoverable residual image problem of AMOLED displays can be improved by surface treatment using ultraviolet light and $H_2$ plasma.

  • PDF

Novel structure for a full-color AMOLED using a blue common layer (BCL)

  • Kim, Mu-Hyun;Chin, Byung-Doo;Suh, Min-Chul;Yang, Nam-Chul;Song, Myung-Won;Lee, Jae-Ho;Kang, Tae-Min;Lee, Seong-Taek;Kim, Hye-Dong;Park, Kang-Sung;Oh, Jun-Sik;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.797-798
    • /
    • 2005
  • We report a novel structure for a full-color AMOLED (Active Matrix Organic Light Emitting Diode) eliminating the patterning process of a blue emitting layer. The patterning of the three primary colors, RGB, is a key technology in the OLED fabrication process. Conventional full color AMOLED containing RGB layers includes the three opportunities of the defects to make an accurate position and fine resolution using various technologies such as fine metal mask, ink-jet printing and laser-induced transfer system. We can skip the blue patterning step by simply stacking the blue layer as a common layer to the whole active area after pixelizing two primary colors, RG, in the conventional small molecular OLED structure. The red and green pixel showed equivalent performances without any contribution of the blue emission.

  • PDF

Improved On-off Property of SiO2 Embedded Polyfluorene Polymer-OLED (SiO2의 첨가를 통한 Polyfluorene계 Polymer-OLED의 발광 동작 개선 가능성)

  • Jeon, Byung Joo;Kim, Hyo Jun;Kim, Jong Su;Jeong, Yong Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.40-44
    • /
    • 2017
  • The effect of weak dielectric silicone dioxide($SiO_2$) embedded in polyfluorene(PFO) emitting layer of polymer-based multi structure OLED was investigated. Indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)/poly(9,9-di-n-octylfluorenyl-2,7-diyl)(PFO)/2,2,2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)/aluminum(Al) structure OLED was fabricated by spin-coating method. Applied electric field causes some effect on $SiO_2$ in PFO layer. Thus, interaction between polymers and affected $SiO_2$ might generate electrical and luminance properties change. Experimental results, show the reduced threshold voltage of 6 V(from 23 V to 17 V). The maximum current density was rather increased from $71A/m^2$ to $610A/m^2$ and maximum brightness was also increased from $7.19cd/m^2$ to $41.03cd/m^2$, 9 and 6 times each. Additionally we obtained colour broadening result due to the increasing of blue-green band emission. Consequently we observed that electrical and luminance properties are enhanced by adding $SiO_2$ and identified the possibility of controlling the emission colour of OLED device according to colour broadening.

  • PDF

방사광 가속기의 광전자 분광법을 이용한 전면 발광 유기발광 다이오드에서의 열중착 산화구리와 유기물 사이의 계면 dipole 에너지 및 정공 주입 효율에 대한 연구

  • Kim, Seong-Jun;Hong, Gi-Hyeon;Kim, Gi-Su;Lee, Il-Hwan;Lee, Jong-Ram
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.8-10
    • /
    • 2010
  • We report the enhancement of hole injection using thermally evaporated $CuO_x$ layer between Ag anode and 4,4'-Bis[N-(1-naphthyl)-N-phenylamino]biphenyl ($\alpha$-NPD) in top-emitting organic light-emitting diode (TEOLED). The operation voltage at the current density of $1mA/cm^2$ of TEOLEDs decreased from 6.2 V to 5.0 V as the $CuO_x$ layer inserted between Ag and $\alpha$-NPD. $\alpha$-NPD was deposited in situ on Ag/$CuO_x$ and Ag anodes, and their interface dipole energies were quantitatively determined using synchrotron radiation photoemission spectroscopy. The dipole energy of Ag/$CuO_x$ was lower by 0.05 eV even though Ag/$CuO_x$ had a higher work function. The work function of Ag/$CuO_x$ is higher by 0.53 eV than that of Ag, resulting in a decrease of the turn-on voltage via reduction of hole injection barrier.

  • PDF

In-situ Thermally Curable Hyper-branched 10H-butylphenothiazine

  • Jo, Mi-Young;Lim, Youn-Hee;Ahn, Byung-Hyun;Lee, Gun-Dae;Kim, Joo-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.492-498
    • /
    • 2012
  • A hyper branched 10-butylphenothiazine with in-situ thermally curable methacrylate (1,3,5-tris-[$\{$10-Butyl-3-(4-(2-methyl-acryloyloxy)-phenyl)-7-yl-10H-phenothiazine$\}$]-benzene, (tris-PTMA)) was synthesized successfully. From the TGA thermogram of tris-PTMA was thermally stable up to $336^{\circ}C$. In the first heating scan of DSC thermogram, tris-PTMA showed glass transition temperature (Tg) at $140^{\circ}C$ and broad endothermic process in the region of $144-179^{\circ}C$, which is thermally curing temperature. In the second heating process, $T_g$ exhibited at $158.7^{\circ}C$ and endothermic process was not observed. Thermally cured tris-PTMA showed no big change in the UV-visible spectrum after washing with organic solvent such as methylene chloride, chloroform, toluene, indicating that thermally cured film was very good solvent resistance. Thermally cured tris-PTMA was electrochemically stable and the HOMO energy level of tris-PTMA was -5.54 eV. The maximum luminance efficiency of double layer structured polymer light-emitting diode based on in-situ thermally cured tris-PTMA was 0.685 cd/A at 16.0 V, which was higher than that of the device without thermally cured tris-PTMA (0.348 cd/A at 15.0 V).

Enhanced Hole Concentration of p-GaN by Sb Surfactant (Sb 계면활성제에 의한 p-GaN 박막의 홀농도 향상)

  • Kim, J.Y.;Park, S.J.;Moon, Y.B.;Kwon, M.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.271-275
    • /
    • 2011
  • The role and effect of Sb surfactant on structure and properties of p type gallium nitride (GaN) epilayers have been investigated. It was found that there was a increase of hole concentration with Sb surfactant, compared to typical Mg-doped p-GaN. The structural and optical quality of p-GaN epilayers were accessed by x-ray diffraction, photoluminescence and atomic force microscope measurements. The results clearly show that the increase in hole concentration with Sb surfactant can be resulted from decrease in the dislocations and nitrogen point defects.

Alignment System Development for producing OLED using Fourth-Generation Substrate

  • Park, Jae-Yong;Han, Seok-Yoon;Lee, Nam-Hoon;Choi, Jeong-Og;Shin, Ho-Seon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.873-878
    • /
    • 2008
  • Doosan Mecatec has developed alignment system for Organic Light-Emitting Diode (OLED) display production using large size substrate. In the present article, The alignment system between the substrate and the mask, which is a core technology for producing the OLED product using the fourth-generation substrate with $730{\times}920mm^2$ or more, will be described by dividing into a substrate loader, a magnet unit, a CCD camera, etc. The substrate loader is optimized through the simulation where the central portion of the substrate droops by about 1.5mm by clamping each of a long side (920mm direction) and a short side (730mm direction) thereof by 6 point and 4 point. A magnet unit using a sheet type of rubber magnet is constituted and a CCD camera model with the specifications capable of minimizing the errors between a clear image and the same image is selected. The system to which an upward evaporation technique of small molecular organic materials will be applied has been developed so that repeatability and position accuracy becomes ${\pm}1{\mu}m$ or less using an UVW type of stage. Also, the vision accuracy of the CCD camera becomes ${\pm}1{\mu}m$ or less and the align process TACT becomes 30sec. or less so that the final alignment accuracy between the substrate and the mask becomes ${\pm}3{\mu}m$ or less. In order to meet an extra-large glass substrate, an evaporation system using an extra-large AMOLED substrate has been developing through a vertical type of an alignment system.

  • PDF

Red Emission Properties of Organic EL Having Hole Blocking Layer (정공블록킹층을 설치한 유기 EL의 적색발광특성)

  • Kim, Hyeong-Gweon;Lee, Eun-Hak
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.17-23
    • /
    • 2000
  • In this study, we prepared red organic light-emitting-diode(OLED) with a fluorescent dye(Sq)-doped and inserted between emission and cathode layer 1,3-bis(5-p-t-butylphenyl)-1,3,4-oxadiazol-2-yl)benzene (OXD7) or/and tris(8-hydroxyquinoline) aluminum ($Alq_3$) layers for increasing electroluminescent(EL) efficiency. This inserting effect has been observed and EL mechanism characteristics have been examined. The hole transfer layer is a N,N'-diphenyl-N,N'-bis-(3-methyl phenyl)-1,1'-diphenyl-4,4'-diamine (TPD), and the host and guest materials of emission layer is $Alq_3$ and bis[1-methyl-3,3'-dimethyl-2-indorindiylmethyl] squaraine (Sq), respectively. For the inserting of $Alq_3$, emission efficiency increased. But we can not obtained highly pure red emission owing to the emission of inserting $Alq_3$ layer. The inserting of OXD7 makes hole block and accumulate. Because of increasing recombination probability of electron and hole, highly pure red color can be held. Simultaneously brightness characteristics and emission efficiency could improve.

  • PDF