Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.2.492

In-situ Thermally Curable Hyper-branched 10H-butylphenothiazine  

Jo, Mi-Young (Department of Polymer Engineering, Pukyong National University)
Lim, Youn-Hee (Samsung Advanced Institute and Technology)
Ahn, Byung-Hyun (Division of Advanced Materials and Engineering, Pukyong National University)
Lee, Gun-Dae (Department of Industrial Chemistry, Pukyong National University)
Kim, Joo-Hyun (Department of Polymer Engineering, Pukyong National University)
Publication Information
Abstract
A hyper branched 10-butylphenothiazine with in-situ thermally curable methacrylate (1,3,5-tris-[$\{$10-Butyl-3-(4-(2-methyl-acryloyloxy)-phenyl)-7-yl-10H-phenothiazine$\}$]-benzene, (tris-PTMA)) was synthesized successfully. From the TGA thermogram of tris-PTMA was thermally stable up to $336^{\circ}C$. In the first heating scan of DSC thermogram, tris-PTMA showed glass transition temperature (Tg) at $140^{\circ}C$ and broad endothermic process in the region of $144-179^{\circ}C$, which is thermally curing temperature. In the second heating process, $T_g$ exhibited at $158.7^{\circ}C$ and endothermic process was not observed. Thermally cured tris-PTMA showed no big change in the UV-visible spectrum after washing with organic solvent such as methylene chloride, chloroform, toluene, indicating that thermally cured film was very good solvent resistance. Thermally cured tris-PTMA was electrochemically stable and the HOMO energy level of tris-PTMA was -5.54 eV. The maximum luminance efficiency of double layer structured polymer light-emitting diode based on in-situ thermally cured tris-PTMA was 0.685 cd/A at 16.0 V, which was higher than that of the device without thermally cured tris-PTMA (0.348 cd/A at 15.0 V).
Keywords
In-situ thermal curing; Hyper branched 10H-butylphenothiazine; p-Type organic semiconductor; Hole transporting/injection material;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2002, 106, 6129.   DOI   ScienceOn
2 Babel, A.; Jenekhe, S. A. J. Phys. Chem. B 2003, 107, 1749.   DOI   ScienceOn
3 Babel, A.; Jenekhe, S. A. Macromolecules 2003, 36, 7759.   DOI   ScienceOn
4 Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. Chem. Mater. 1998, 10, 2101.   DOI   ScienceOn
5 Fungo, F.; Jenekhe, S. A.; Bard, A. J. Chem. Mater. 2003, 15, 1264.   DOI   ScienceOn
6 Sen, L.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2000, 33, 3514.   DOI   ScienceOn
7 Jiang, X.; Sen, L.; Ma, H.; Liu, M. S.; Jen, A. K.-Y. Appl. Phys. Lett. 2000, 76, 2985.   DOI   ScienceOn
8 Kim, J. H.; Liu, S.; Jen, A. K.-Y.; Carlson, B.; Dalton, L. R.; Shu,C.-F.; Dodda, R. Appl. Phys. Lett. 2003, 83, 776.   DOI   ScienceOn
9 Kim, J. H.; Herguth, P.; Kang, M.-S.; Tseng, Y.-H.; Shu, C.-F. Appl. Phys. Lett. 2004, 85, 1116.   DOI   ScienceOn
10 Niu, Y.-H.; Liu, M. S.; Ka, J.-W.; Jen, A. K.-Y. Appl. Phys. Lett. 2006, 88, 0933505.
11 Liu, M. S.; Niu, Y.-H.; Ka, J.-W.; Yip, H.-L.; Huang, F.; Luo, J.; Kim, T.-D.; Jen, A. K.-Y. Macromolecules 2008, 41, 9570.   DOI   ScienceOn
12 Cheng, Y.-J.; Liu, M. S.; Zhang, Y.; Niu, Y.-N.; Huang, F.; Ka, J.- W.; Yip, H.-L.; Jen, A. K.-Y. Chem. Mater. 2008, 20, 413.   DOI   ScienceOn
13 Jung, M. S.; Shin, W.; Park, S. J.; You, ; Park, J. B.; Suh, H.; Lim, Y.; Yoon, D. Y.; Kim, J. H. Synth. Met. 2009, 159, 1928.   DOI   ScienceOn
14 Lim, Y.; Park, Y.-S.; Kang, Y.; Jang, D. Y.; Kim, J. H.; Kim, J.-J.; Sellinger, A.; Yoon, D. Y. J. Am. Chem. Soc. 2011, 133, 1375.   DOI   ScienceOn
15 Kong, X.; Kulkarni, P.; Jenekhe, S. A. Macromolecules 2003, 36, 8992.   DOI   ScienceOn
16 Wu, T.-Y.; Chen, Y. J. Polym. Sci.; Part A 2002, 40, 4452.   DOI   ScienceOn
17 Herguth, P.; Jiang, X.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2002, 35, 6094.   DOI   ScienceOn
18 Heeger, A. J. Angew. Chem.: Int. Ed. 2001, 40, 2591.   DOI   ScienceOn
19 McDiarmid, A. G. Angew. Chem.: Int. Ed. 2001, 40, 2581.   DOI   ScienceOn
20 Friend, R. H.; Gymer, R. W. ; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C., Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature (London) 1999, 397, 121.   DOI   ScienceOn
21 Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem.: Int. Ed. 1998, 37, 402.   DOI   ScienceOn
22 Yu, G.; Heeger, A. J. J. Appl. Phys. 1995, 78, 4510.   DOI   ScienceOn
23 Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature (London) 1995, 376, 498.   DOI   ScienceOn
24 Arias, A. C.; MacKenzie, J. D.; Stevenson, R.; Halls, J. J. M.; Inbasekaran, M.; Woo, E. P.; Richards, D.; Friend, R. H. Macromolecules 2001, 34, 6005.   DOI   ScienceOn
25 Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Appl. Phys. Lett. 1996, 69, 4108.   DOI   ScienceOn
26 Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741.   DOI   ScienceOn
27 Babel, A.; Jenekhe, S. A. Adv. Mater. 2002, 14, 371.   DOI   ScienceOn