• Title/Summary/Keyword: Organic insulator

Search Result 192, Processing Time 0.027 seconds

Solution-Processed Gate Insulator of Ethylene-Bridged Silsesquioxnae for Organic Field-Effect Transistor (OTFT용 용액공정의 에틸렌-브리지드 실세스퀴옥산 게이트 절연체)

  • Lee, Duck-Hee;Jeong, Hyun-Dam
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.7-18
    • /
    • 2010
  • Ethylene-bridged silsesquioxane resins were synthesized from two monomers: 1,2-bis(trimethoxysilyl)ethane and methyltrimethoxysilane. The silsesquioxane thin films were spin-coated from the copolymerized resins on silicon wafer. Metal insulator metal (MIM), metal insulator semiconductor (MIS) devices were utilized to investigate the electrical properties of the copolymerized thin films. As the films were inserted as gate insulator in the OTFT devices, the field effect mobilitites were evaluated by employing Poly(3-hexylthiophene) (P3HT) as organic semiconductor, which shows that their dielectric properties and mobility values are dependent on the molecular structures and Si-OH concentration involving in the films.

Study on the Characteristics of Organic TFT Using Organic Insulating Layer Efficiency (유기 절연층에 따른 유기 TFT 특성 연구)

  • Pyo, Sang-Woo;Lee, Min-Woo;Sohn, Byung-Chung;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.335-338
    • /
    • 2002
  • A new process for polymeric gate insulator in field-effect transistors was proposed. Fourier transform infrared absorption spectra were measured in order to identify ODPA-ODA polyimide. Its breakdown field and electrical conductivity were measured. All-organic thin-film transistors with a stacked-inverted top-contact structure were fabricated to demonstrate that thermally evaporated polyimide films could be used as a gate insulator. As a result, the transistor performances with evaporated polyimide was similar with spin-coated polyimide. It seems that the mass-productive in-situ solution-free processes for all-organic thin-film transistors are possible by using the proposed method without vacuum breaking.

Effect of Characteristic of the Organic Memory Devices by the Number of CdSe/ZnS Nanoparicles Per Unit Area Changes

  • Kim, Jin-U;Lee, Tae-Ho;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.388-388
    • /
    • 2013
  • 현대 사회에서 고집적 및 고성능의 전자소자의 필요성은 지속적으로 요구되고 있으며, 투명하거나 플렉서블한 특성의 필요성에 따라 이에 대한 기술개발이 이루어지고 있다. 특히, 이러한 특성을 만족하면서 대면적화 및 저온 공정의 특성을 지니는 유기물 반도체가 주목받고 있고, 이를 이용하여 OLED (Organic Light Emitting Diode), OTFT (Organic Thin Film Transistor)와 같은 다양한 유기물 반도체 소자가 개발되고 있다. 대표적인 예로는이 있다. 유기물 반도체 소자의 특성을 이용한 메모리 소자 또한 연구 및 개발이 지속되고 있으며, 유연성과 낮은 공정가격 등의 특성을 가지는 나노 입자들이 기존 Floating Gate의 대체물로 각광받고 있다. 본 논문에서는 MIS (Metal/Insulator/Semiconductor) 구조를 제작하고, Insulator 내부에Core/Shell 구조를 가지는 CdSe/ZnS 나노 입자를 부착하여 메모리 소자의 특성 확인 및 단위 면적당 개수에 따른 특성 변화를 확인하고자 하였다. 합성된 PVP (Poly 4-Vinyl Phenol)를 Insulator 층으로 사용하였으며 단위 면적당 나노 입자의 개수를 조절하여 제작된 MIS 소자를 Capacitance versus Voltage (C-V) 측정을 통하여 변화특성을 확인하였다.

  • PDF

A Study on Light-weight Inorganic Insulation (경량 무기 단열재에 관한 연구)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.217-218
    • /
    • 2012
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The organic material is be toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. This study focused on thermal conductivity and density of inorganic foam material for using industrial by-products materials.

  • PDF

Plasma Polymerized Styrene for Gate Insulator Application to Pentacene-capacitor (유기박막트랜지스터 응용을 위해 플라즈마 중합된 Styrene 게이트 절연박막)

  • Hwang, M.H.;Son, Y.D.;Woo, I.S.;Basana, B.;Lim, J.S.;Shin, P.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.327-332
    • /
    • 2011
  • Plasma polymerized styrene (ppS) thin films were prepared on ITO coated glass substrates for a MIM (metal-insulator-metal) structure with thermally evaporated Au thin film as metal contact. Also the ppS thin films were applied as organic insulator to a MIS (metal-insulatorsemiconductor) device with thermally evaporated pentacene thin film as organic semiconductor layer. After the I-V and C-V measurements with MIM and MIS structures, the ppS revealed relatively higher dielectric constant of k=3.7 than those of the conventional poly styrene and very low leakage current density of $1{\times}10^{-8}Acm^{-2}$ at electric field strength of $1MVcm^{-1}$. The MIS structure with the ppS dielectric layer showed negligible hysteresis in C-V characteristics. It would be therefore expected that the proposed ppS could be applied as a promising dielectric/insulator to organic thin film transistors, organic memory devices, and flexible organic electronic devices.

Pentacene TFTs and Integrated Circuits with PVP as Gate Insulator

  • Xu, Yong-Xian;Byun, Hyun-Sook;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1027-1029
    • /
    • 2004
  • In this paper, we have fabricated pentacene thin film transistors (TFTs) using polyvinylphenol (PVP) copolymer and cross-linked PVP as gate insulator on glass and plastic (PET) substrate. Depending on the density of PVP and cross-link material the performance has been changed. We obtained the best device performance with the mobility of 0.32cm2/V${\cdot}$sec and the on/off current ratio of 1.19${\times}$106 for the case of 10wt% PVP copolymer mixed with 5wt% poly (melamine-co-formaldehyde). Additionally using pentacene TFTs with the above PVP gate insulator, we fabricated the integrated circuits including inverter which produced the gain of 9.7.

  • PDF

Low temperature curable organic gate insulator for organic field-effect transistors

  • Kim, Joo-Young;Jung, Myung-Sup;Lee, Sang-Yoon;Kim, Jong-Min;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.664-666
    • /
    • 2008
  • Low-temperature curable organic insulator was prepared through blending of polyimide type base resin and cross-linking agent. The newly developed resin can be formed into films using a wet process and cured at $130^{\circ}C$. Using the low temperature cured film as the gate dielectric layer, the field effect mobility of $0.15\;cm^2/V{\cdot}s$ was obtained from a pentacene field effect transistor in the saturation regime and no hysteresis behavior was observed in transfer curves.

  • PDF

Pentacene TFTs with Photoaligned Gate Insulator Surface

  • Lee, Jong-Hyuk;Kang, Chang-Heon;Choi, Jong-Sun;Song, Dong-Mee;Shin, Dong-Myung;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.575-578
    • /
    • 2002
  • In this work, the electrical characteristics of organic thin film transistors with the surface-treated organic gate insulator have been studied. For the surface treatment, the photoalignment technique was used. The field effect mobilities of the devices with PVP gate insulator was improved about ten times as high as those of TFTs without the insulator surface treatment.

  • PDF

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors (유기트랜지스터 내부 편재화 준위간 커플링에 의한 계면 전하이동의 비선형적 가속화 현상의 이해)

  • Han, Songyeon;Kim, Soojin;Choi, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.144-152
    • /
    • 2021
  • Understanding charge transfer across the interface between organic semiconductor and gate insulator gives insight into the development of high-performance organic memory as well as highly stable organic field-effect transistors (OFETs). In this work, we firstly unveil a novel interfacial charge transfer mechanism, in which hole transfer from organic semiconductor to polymer insulator was nonlinearly boosted by localized states coupling. For this, OFETs based on rubrene single crystal semiconductor and Mylar gate insulator were fabricated via vacuum lamination, which allows stable repetition of lamination and delamination between semiconductor and gate insulator. The surfaces of rubrene single crystal and Mylar film were selectively degraded by photo-induced oxygen diffusion and UV-ozone treatment, respectively. Consequently, we found that the interfacial charge transfer and resultant bias-stress effect were nonlinearly boosted by coupling between localized states in rubrene and Mylar. In particular, the small number of localized states in rubrene single crystal provided fluent pathway for interfacial charge transport.

The effect of 3-mercapto-5-nitro-benzimidazole (MNB) and poly (methyl methacrylate) (PMMA) treatment sequence organic thin film transistor

  • Park, Jin-Seong;Suh, Min-Chul;Jeong, Jong-Han;Kim, Su-Young;Mo, Yeon-Gon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1174-1177
    • /
    • 2006
  • A bottom contact organic thin film transistor (OTFT) is fabricated with an organic double-layered gate insulator (GI) and pentacene. The PMMA and MNB layers are treated on gate insulator and source/drain (S/D, Au) before depositing pentacene to investigate device properties and pentacene growth. The sequence of surface treatment affects a device performance seriously. The ultra-thin PMMA (below 50A) was deposited on organic gate insulator and S/D metal by spin coating method, which showed no deterioration of on-state current (Ion) although bottom contact structure was exploited. We proposed that the reason of no contact resistance (Rc) increase may be due to a wettability difference in between PMMA / Au and PMMA / organic GI. As a result, the device treated by $PMMA\;{\rightarrow}\;MNB$ showed much better Ion behavior than those fabricated by $MNB\;{\rightarrow}\;PMMA$. We will report the important physical and electrical performance difference associated with surface treatment sequence.

  • PDF