Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.5.327

Plasma Polymerized Styrene for Gate Insulator Application to Pentacene-capacitor  

Hwang, M.H. (Department of Safety Engineering, University of Incheon)
Son, Y.D. (Department of Safety Engineering, University of Incheon)
Woo, I.S. (Department of Safety Engineering, University of Incheon)
Basana, B. (Department of Safety Engineering, University of Incheon)
Lim, J.S. (Department of Electrical Engineering, Inha University)
Shin, P.K. (Department of Electrical Engineering, Inha University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.5, 2011 , pp. 327-332 More about this Journal
Abstract
Plasma polymerized styrene (ppS) thin films were prepared on ITO coated glass substrates for a MIM (metal-insulator-metal) structure with thermally evaporated Au thin film as metal contact. Also the ppS thin films were applied as organic insulator to a MIS (metal-insulatorsemiconductor) device with thermally evaporated pentacene thin film as organic semiconductor layer. After the I-V and C-V measurements with MIM and MIS structures, the ppS revealed relatively higher dielectric constant of k=3.7 than those of the conventional poly styrene and very low leakage current density of $1{\times}10^{-8}Acm^{-2}$ at electric field strength of $1MVcm^{-1}$. The MIS structure with the ppS dielectric layer showed negligible hysteresis in C-V characteristics. It would be therefore expected that the proposed ppS could be applied as a promising dielectric/insulator to organic thin film transistors, organic memory devices, and flexible organic electronic devices.
Keywords
Plasma polymerized styrene (ppS); Organic MIS-capacitor; Organic MIM-device; Organic thin film transistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Klauk, Organic Electronics: Materials, Manufacturing and Applications (WILEY- VCH GmbH, 2006), Chapter 6.
2 Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Transactions on Electron Devices 44, 1325 (1997).   DOI
3 C. Zhang, J. Wyatt, and D. H. Weinkauf, Polymer 45, 7665 (2004).   DOI
4 Y. V. Pan, E. Z. Barrios, D. D. Denton, J. Polym. Sci. Part A: Polym. Chem. 36, 587 (1998).   DOI
5 S. Morita, J. Tamano, S. Hattori, and M. Ieda, J. Appl. Phys. 51, 3938 (1980).   DOI
6 J. S. Lim and P. K. Shin, Appl. Surf. Sci. 253, 3828 (2007).   DOI
7 J. H. Park, J. H. Bae, W. H. Kim, S. D. Lee, J. S. Gwang, D. W. Kim, J. C. Noh, and J. S. Choi, Solid-State Electronics 54, 1650 (2010).   DOI   ScienceOn
8 H. W. Zan and C. W. Chou, Jpn. J. Appl. Phys. 48, 031501 (2009).   DOI
9 Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett. 88, 072101 (2006).   DOI
10 M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, Synth. Met. 137, 967 (2003).   DOI
11 S. Y. Yang, K. Shin, and C. E. Park, Advanced Functional Materials 15, 1806 (2005).   DOI
12 C. Riedel, G. A. Schwartz, R. Arinero, G. Leveque, A. Alegria, and J. Colmenero, Ultramicroscopy 110, 634 (2010).   DOI