• Title/Summary/Keyword: Organic field-effect transistors

Search Result 187, Processing Time 0.032 seconds

Low Spin-Casting Solution Temperatures Enhance the Molecular Ordering in Polythiophene Films

  • Lee, Wi Hyoung;Lee, Hwa Sung;Park, Yeong Don
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1491-1494
    • /
    • 2014
  • High-crystallinity poly(3-hexylthiophene) (P3HT) thin films were prepared by aging the precursor solutions, prepared using a good solvent, chloroform, at low temperatures prior to spin-casting. Lower solution temperatures significantly improved the molecular ordering in the spin-cast P3HT films and, therefore, the electrical properties of field-effect transistors prepared using these films. Solution cooling enhanced the electrical properties by shifting the P3HT configuration equilibrium away from random coils and toward more ordered aggregates. At room temperature, the P3HT molecules were completely solvated in chloroform and adopted a random coil conformation. Upon cooling, however, the chloroform poorly solvated the P3HT molecules, favoring the formation of ordered P3HT aggregates, which then yielded more highly crystalline molecular ordering in the P3HT thin films produced from the solution.

Observation of saturation transfer characteristics in solution processed vertical organic field-effect transistors (VOFETs) with high leakage current

  • Sarjidan, M.A. Mohd;Shuhaimi, Ahmad;Majid, W.H. Abd.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1415-1421
    • /
    • 2018
  • Unlike ordinary organic field-effect transistors (OFETs), saturation current is hardly to be found in vertical OFETs (VOFETs). Moreover, the fabrication process of patterned sourced for VOFETs is quite complex. In this current work, a simple solution processed VOFET with directly deposited intermediate silver source electrode has been demonstrated. The VOFET exhibits a high leakage current that induces an inversion polarity of its transistor behavior. Interestingly, a well-defined saturation current was observed in the linear scale of transfer characteristic. The VOFET operated with high-current density > $280mA/cm^2$ at $V_d=5V$. Overview potential of the fabricated device in display application is also presented. This preliminary work does open-up a new direction in VOFET fabrication and their application.

Dynamic Response and Carrier Velocity in Organic Field-Effect Transistors

  • Cobb, Brian;Wang, Liang;Dunn, Lawrence;Dodabalapur, Ananth
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.60-63
    • /
    • 2009
  • In this letter we report on the carrier velocity of polycrystalline pentacene transistors as a function of electric field. We performed a series of measurements on devices with a range of channel lengths. At moderate electric fields (<$5{\times}10^5$ V/cm), the characteristics are similar to those of disordered or amorphous organic semiconductors. The highest velocities we have measured are near $6{\times}10^4$ cm/s at room temperature. We perform quasi-static and dynamic measurements to measure carrier velocity. These results fill an important void between experimental results that have been obtained with disordered/amorphous organic semiconductors and single crystals.

  • PDF

DIRECT PROBING OF CARRIER MOTION IN ORGANIC FIELD EFFECT TRANSISTOR BY OPTICAL SECOND HARMONIC GENERATION

  • Iwamoto, Mitsumasa;Manaka, Takaaki;Lim, Eun-Ju
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1561-1563
    • /
    • 2008
  • We report an optical second harmonic generation measurement that allows direct probing of dynamical carrier motion in organic field effect transistors. Carrier injection and transport process are discriminated. The mobility and contact resistance of pentacene FETs are determined from the visualized diffusion-like carrier motion.

  • PDF

Study on the Organic Gate Insulators Using VDP Method (VDP(Vapor Deposition Polymerization) 방법을 이용한 유기 게이트 절연막의 대한 연구)

  • Pyo, Sang-Woo;Shim, Jae-Hoon;Kim, Jung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.185-190
    • /
    • 2003
  • In this paper, it was demonstrated that the organic thin film transistors were fabricated by the organic gate insulators with vapor deposition polymerization (VDP) processing. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and ODA, and cured at $150^{\circ}C$ for 1hr. Electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure obtained to the saturated slop in the saturation region and the subthreshold non-linearity in the triode region. Field effect mobility, threshold voltage, and on-off current ratio in $0.45\;{\mu}m$ thick gate dielectric layer were about $0.17\;cm^2/Vs$, -7 V, and $10^6\;A/A$, respectively. Details on the explanation of compared to organic thin-film transistors (OTFTS) electrical characteristics of ODPA-ODA and 6FDA-ODA as gate insulators by fabricated thermal co-deposition method.

  • PDF

Solvent Vapor Annealing Effects in Contact Resistances of Zone-cast Benzothienobenzothiophene (C8-BTBT) Transistors

  • Kim, Chaewon;Jo, Anjae;Kim, Heeju;Kim, Miso;Lee, Jaegab;Lee, Mi Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.411-416
    • /
    • 2016
  • Benzothienobenzothiophene ($C_8-BTBT$) is a soluble organic small molecule material with high crystallinity resulting from its strong self-organizing properties. In addition, the high mobility and easy fabrication of $C_8-BTBT$ make it very attractive in terms of organic thin-film transistors. In this work, we made $C_8-BTBT$ thin films by using the zone-casting method; we also used an organic solvent to treat the devices with solvent vapor annealing to improve the electrical properties. As a result, we confirmed improved mobility, threshold voltage, and subthreshold swing after solvent vapor annealing. To prove the effect of solvent vapor annealing, we used the simultaneous extraction model to extract the contact resistance from the current-voltage curve. We confirmed that the electrical properties improved with decreasing contact resistance.

유기 박막 트랜지스터 (Organic TFT)의 유기 활성층 기술 동향

  • 장상웅;최준환;윤호규;이주원;주병권;김재경
    • Electrical & Electronic Materials
    • /
    • v.17 no.8
    • /
    • pp.3-12
    • /
    • 2004
  • 유기 박막 트랜지스터 (Organic Thin film Transistors ; 이하 OTFT)는 1986년부터(1) 반도체 장치의 새로운 부류로 급속하게 발전해 오고 있다. 반도체 산업에 있어 이러한 유기물질의 큰 발전은 1947년에 있었던 최초의 inorganic FET (Field Effect Transistor) 탄생에 버금갈 만한 성과라고 여겨진다.(중략)

  • PDF

Fabrication of Organic-Inorganic Nanohybrid Semiconductors for Flexible Electronic Device

  • Han, Gyu-Seok;Jeong, Hui-Chan;Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.114-114
    • /
    • 2011
  • We report a high-performance and air-stable flexible and invisible semiconductor which can be substitute for the n-type organic semiconductors. N-type organic-inorganic nanohybrid superlattices were developed for active semiconducting channel layers of thin film transistors at low temperature of $150^{\circ}C$ by using molecular layer deposition with atomic layer deposition. In these nanohybrid superlattices, self-assembled organic layers (SAOLs) offer structural flexibility, whereas ZnO inorganic layers provide the potential for semiconducting properties, and thermal and mechanical stability. The prepared SAOLs-ZnO nanohybrid thin films exhibited good flexibility, transparent in the visible range, and excellent field effect mobility (> 7cm2/$V{\cdot}s$) under low voltage operation (from -1 to 3V). The nanohybrid semiconductor is also compatible with pentacene in p-n junction diodes.

  • PDF

Effects of Organic Passivation Layers by Vapor Deposition Polymerization(VDP) for Organic Thin-Film Transistors(OTFTs) (Vapor Deposition Polymerization(VDP)을 이용한 페시베이션이 유기박막트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Kim, Jae-Hyeuk;Kim, Woo-Young;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.114-115
    • /
    • 2007
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing, In order to form polymeric film as an passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing, Field effect mobility, threshold voltage, and on-off current ratio with 450-nm-thick organic passivation layer were about $0.21\;cm^2/Vs$, IV, and $1\;{\times}\;10^5$, respectively.

  • PDF

High-Mobility Ambipolar Polymer Semiconductors by Incorporation of Ionic Additives for Organic Field-Effect Transistors and Printed Electronic Circuits (이온성 첨가제 도입을 통한 고이동도 고분자 반도체 특성 구현과 유기전계효과트랜지스터 및 유연전자회로 응용 연구)

  • Lee, Dong-Hyeon;Moon, Ji-Hoon;Park, Jun-Gu;Jung, Ji Yun;Cho, Il-Young;Kim, Dong Eun;Baeg, Kang-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-134
    • /
    • 2018
  • Herein, we report the manufacture of high-performance, ambipolar organic field-effect transistors (OFETs) and complementary-like electronic circuitry based on a blended, polymeric, semiconducting film. Relatively high and well-balanced electron and hole mobilities were achieved by incorporating a small amount of ionic additives. The equivalent P-channel and N-channel properties of the ambipolar OFETs enabled the manufacture of complementary-like inverter circuits with a near-ideal switching point, high gain, and good noise margins, via a simple blanket spin-coating process with no additional patterning of each active P-type and N-type semiconductor layer.