DOI QR코드

DOI QR Code

Observation of saturation transfer characteristics in solution processed vertical organic field-effect transistors (VOFETs) with high leakage current

  • Sarjidan, M.A. Mohd (Low Dimensional Materials Research Centre, Department of Physics, University of Malaya) ;
  • Shuhaimi, Ahmad (Low Dimensional Materials Research Centre, Department of Physics, University of Malaya) ;
  • Majid, W.H. Abd. (Low Dimensional Materials Research Centre, Department of Physics, University of Malaya)
  • Received : 2018.04.11
  • Accepted : 2018.08.10
  • Published : 2018.11.30

Abstract

Unlike ordinary organic field-effect transistors (OFETs), saturation current is hardly to be found in vertical OFETs (VOFETs). Moreover, the fabrication process of patterned sourced for VOFETs is quite complex. In this current work, a simple solution processed VOFET with directly deposited intermediate silver source electrode has been demonstrated. The VOFET exhibits a high leakage current that induces an inversion polarity of its transistor behavior. Interestingly, a well-defined saturation current was observed in the linear scale of transfer characteristic. The VOFET operated with high-current density > $280mA/cm^2$ at $V_d=5V$. Overview potential of the fabricated device in display application is also presented. This preliminary work does open-up a new direction in VOFET fabrication and their application.

Keywords

Acknowledgement

Supported by : University of Malaya

References

  1. Z. Bao, X. Chen, Flexible and stretchable devices, Adv. Mater. 28 (2016) 4177-4179. https://doi.org/10.1002/adma.201601422
  2. T. Someya, Z. Bao, G.G. Malliaras, The rise of plastic bioelectronics, Nature 540 (2016) 379. https://doi.org/10.1038/nature21004
  3. L. Ma, Y. Yang, Unique architecture and concept for high-performance organic transistors, Appl. Phys. Lett. 85 (2004) 5084-5086. https://doi.org/10.1063/1.1821629
  4. S.-H. Li, Z. Xu, G. Yang, L. Ma, Y. Yang, Solution-processed poly(3-hexylthiophene) vertical organic transistor, Appl. Phys. Lett. 93 (2008) 213301. https://doi.org/10.1063/1.3030990
  5. A. Kvitschal, I. Cruz-Cruz, I.A. Hümmelgen, Copper phthalocyanine based vertical organic field effect transistor with naturally patterned tin intermediate grid electrode, Org. Electron. 27 (2015) 155-159. https://doi.org/10.1016/j.orgel.2015.09.010
  6. B. Liu, M.A. McCarthy, Y. Yoon, D.Y. Kim, Z. Wu, F. So, P.H. Holloway, J.R. Reynolds, J. Guo, A.G. Rinzler, Carbon-nanotube-enabled vertical field effect and light-emitting transistors, Adv. Mater. 20 (2008) 3605-3609. https://doi.org/10.1002/adma.200800601
  7. M.Z. Mohd Halizan, N.A. Roslan, S.M. Abdullah, N. Abdul Halim, T.S. Velayutham, K.L. Woon, A. Supangat, Improving the operational voltage of vertical organic field effect transistor (VOFET) by altering the morphology of dielectric layer, J. Mater. Sci. Mater. Electron. 28 (2017) 11961-11968. https://doi.org/10.1007/s10854-017-7005-4
  8. A.J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, N. Tessler, Selfassembled metallic nanowire-based vertical organic field-effect transistor, ACS Appl. Mater. Interfaces 7 (2015) 2149-2152. https://doi.org/10.1021/am505174p
  9. H. Yu, Z. Dong, J. Guo, D. Kim, F. So, Vertical organic field-effect transistors for integrated optoelectronic applications, ACS Appl. Mater. Interfaces 8 (2016) 10430-10435. https://doi.org/10.1021/acsami.6b00182
  10. A.J. Ben-Sasson, Z. Chen, A. Facchetti, N. Tessler, Solution-processed ambipolar vertical organic field effect transistor, Appl. Phys. Lett. 100 (2012) 263306. https://doi.org/10.1063/1.4731774
  11. A.H. Reshak, M.M. Shahimin, N. Juhari, S. Suppiah, Electrical behaviour of MEHPPV based diode and transistor, Prog. Biophys. Mol. Biol. 113 (2013) 289-294. https://doi.org/10.1016/j.pbiomolbio.2013.09.002
  12. Z. Xu, S.-H. Li, L. Ma, G. Li, Y. Yang, Vertical organic light emitting transistor, Appl. Phys. Lett. 91 (2007) 92911. https://doi.org/10.1063/1.2778751
  13. P.S. Davids, I.H. Campbell, D.L. Smith, Device model for single Carrier organic diodes, J. Appl. Phys. 82 (1997) 6319-6325. https://doi.org/10.1063/1.366522
  14. K.M. Kim, S. Ahn, W. Jang, S. Park, O.O. Park, D.H. Wang, Work function optimization of vacuum free top-electrode by PEDOT:PSS/PEI interaction for efficient semi-transparent perovskite solar cells, Sol. Energy Mater. Sol. Cells 176 (2018) 435-440. https://doi.org/10.1016/j.solmat.2017.11.002
  15. S.-S. Sun, L.R. Dalton, Introduction to Organic Electronic and Optoelectronic Materials and Devices, CCR Press, New York, 2008.
  16. M.A. Lampert, 1921-, P. Mark 1931- Aut, Current Injection in Solids, Academic Press, New York , 1970.
  17. F. Liu, Z. Chen, X. Du, Q. Zeng, T. Ji, Z. Cheng, G. Jin, B. Yang, High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%, J. Mater. Chem. A. 4 (2016) 1105-1111. https://doi.org/10.1039/C5TA08507A
  18. A.R. Inigo, C.C. Chang, W. Fann, J.D. White, Y.-S. Huang, U.-S. Jeng, H.S. Sheu, K.- Y. Peng, S.-A. Chen, Enhanced hole mobility in poly-(2-methoxy-5-(2′-ethylhexoxy)-1,4-phenylenevinylene) by elimination of nanometer-sized domains, Adv. Mater. 17 (2005) 1835-1838. https://doi.org/10.1002/adma.200500331
  19. C.A. Amorim, M.R. Cavallari, G. Santos, F.J. Fonseca, A.M. Andrade, S. Mergulhao, Determination of Carrier mobility in MEH-PPV thin-films by stationary and transient current techniques, J. Non Cryst. Solids 358 (2012) 484-491. https://doi.org/10.1016/j.jnoncrysol.2011.11.001
  20. Q. Shi, Y. Hou, H. Jin, Y. Li, Ambipolar charge transport in bulk heterojunction of poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene)∕C60 composite, J. Appl. Phys. 102 (2007) 73108. https://doi.org/10.1063/1.2779257
  21. M.A. McCarthy, B. Liu, E.P. Donoghue, I. Kravchenko, D.Y. Kim, F. So, A.G. Rinzler, Low-voltage, low-power, organic light-emitting transistors for active matrix displays, Science (80-. ) 332 (2011) 570 LP-573. https://doi.org/10.1126/science.1203052
  22. D. Braun, A.J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett. 58 (1991) 1982-1984. https://doi.org/10.1063/1.105039

Cited by

  1. Annealing effects on output characteristics of solution processable vertical organic light-emitting transistor (VOLET) vol.693, pp.1, 2018, https://doi.org/10.1080/15421406.2020.1723916
  2. Prospect of silver nanowire (AgNW) in development of simple and cost-effective vertical organic light-emitting transistors vol.125, pp.12, 2018, https://doi.org/10.1007/s00339-019-3162-z
  3. Enhancing the Electrical Properties of Vertical OFETs Using a P(VDF-TrFE) Dielectric Layer vol.49, pp.2, 2018, https://doi.org/10.1007/s11664-019-07805-3
  4. MEH-PPV organic material as saturable absorber for Q-switching and mode-locking applications vol.67, pp.8, 2018, https://doi.org/10.1080/09500340.2020.1769762