• 제목/요약/키워드: Organic aerosol

검색결과 142건 처리시간 0.041초

여천공단 대기 중의 입자상 및 기세상 이온성분과 유기화합물의 농도 (Concentrations of Particulate and Gaseous Ionic and Organic Species in the Ambient Air of the Yochon Industrial Estate)

  • 김용표;이종훈;진현철;문길주
    • 한국대기환경학회지
    • /
    • 제13권4호
    • /
    • pp.269-284
    • /
    • 1997
  • The ambient concentrations of gaseous and particulate phase ionic species and gaseous organic species in the Yochon industrial estate were measured during the spring ans summer of 1996. A three-stage filter pack sampler was used to collect particles and gaseous species, and stainless steel air sampling containers were used to collect air samples for organic species analyses. The concentrations of ions in aerosol wree comparable to those measured in Seoul. Aerosols measured were acidic, thus, most volatile acidic species were in the gas phase. The concentrations of organic species were highly variable, implying those were strongly dependent on the emissions of organic species from petrochemical plants. The concentrations of a few hazardous organic components were higher than those in Seoul or some populated areas in USA.

  • PDF

XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사 (Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin)

  • 정재욱;김자현;박승식;문광주;이석조
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

Stainless steel에 접종된 식중독 미생물에 대한 천연항균제 및 유기산 분무 살균효과 (Efficacy of Aerosolized Natural Antimicrobial and Organic Acids as a Sanitizer against Foodborne Pathogens on Stainless Steel)

  • 하수정;양승국;박현주;김충환;오세욱
    • 한국식품위생안전성학회지
    • /
    • 제26권4호
    • /
    • pp.336-341
    • /
    • 2011
  • 본 연구는 Escherichia coli O157:H7, Salmonella Typhimurium 그리고 Listeria monocytogenes에 대하여 천연항균제와 유기산을 이용한 분무 살균제 (aerosol sanitizer)의 살균효과를 검토하였다. 실제 가공공장의 주요 기계나 기구로 사용하는 stainless steel을 coupon으로 이용하여 인위적으로 접종한 식중독 미생물을 model cabinet에서 5분 동안 자몽종자추출물(grapefruit seed extract), acetic acid, citric acid 그리고 lactic acid로 처리 하였다. 3가지 식중독 미생물의 수는 GEF와 유기산 단독 처리시 0.34-3.77log의 균 감소를 나타내었고, 병행 처리시 1.72-3.89 log의 균 감소를 나타내었고 GEF, 유기산 그리고 알코올을 병행 처리시 1.46-5.05 log의 균 감소효과를 나타냈다. 세 종류의 유기산 중 항균력이 가장 높은 것으로 측정된 lactic acid를 이용하여 scale-up 모델에서 10분 동안 처리 한 결과는 E. coli O157:H7, S. Typhimurium 그리고 L. monocytogenes는 각각 3.42, 2.72, 2.30log의 균 감소를 나타내었다. 따라서 천연항균제와 유기산을 이용한 분무 살균제는 안전한 식품에 대한 소비자의 수요를 충족시키고, 환경 위생 방법으로 사용할 수 있다고 생각되었다.

광주 지역에서 2018년 1월 측정한 초미세먼지의 오염 특성 (Pollution characteristics of PM2.5 observed during January 2018 in Gwangju)

  • 유근혜;박승식;정선아;조미라;장유운;임용재;김영성
    • 한국입자에어로졸학회지
    • /
    • 제15권3호
    • /
    • pp.91-104
    • /
    • 2019
  • In this study, hourly measurements of $PM_{2.5}$ and its major chemical constituents such as organic and elemental carbon (OC and EC), and ionic species were made between January 15 and February 10, 2018 at the air pollution intensive monitering station in Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were collected at the same site and analyzed for OC, EC, water-soluble OC (WSOC), humic-like substance (HULIS), and ionic species. Over the whole study period, the organic aerosols (=$1.6{\times}OC$) and $NO_3{^-}$ concentrations contributed 26.6% and 21.0% to $PM_{2.5}$, respectively. OC and EC concentrations were mainly attributed to traffic emissions with some contribution from biomass burning emissions. Moreover, strong correlations of OC with WSOC, HULIS, and $NO_3{^-}$ suggest that some of the organic aerosols were likely formed through atmospheric oxidation processes of hydrocarbon compounds from traffic emissions. For the period between January 18 and 22 when $PM_{2.5}$ pollution episode occurred, concentrations of three secondary ionic species ($=SO{_4}^{2-}+NO_3{^-}+NH_4{^+}$) and organic matter contributed on average 50.8 and 20.1% of $PM_{2.5}$, respectively, with the highest contribution from $NO_3{^-}$. Synoptic charts, air mass backward trajectories, and local meteorological conditions supported that high $PM_{2.5}$ pollution was resulted from long-range transport of haze particles lingering over northeastern China, accumulation of local emissions, and local production of secondary aerosols. During the $PM_{2.5}$ pollution episode, enhanced $SO{_4}^{2-}$ was more due to the long-range transport of aerosol particles from China rather than local secondary production from $SO_2$. Increasing rate in $NO_3{^-}$ was substantially greater than $NO_2$ and $SO{_4}^{2-}$ increasing rates, suggesting that the increased concentration of $NO_3{^-}$ during the pollution episode was attributed to enhanced formation of local $NO_3{^-}$ through heterogenous reactions of $NO_2$, rather than impact by long-range transportation from China.

Thermal Distribution of Size-resolved Carbonaceous Aerosols and Water Soluble Organic Carbon in Emissions from Biomass Burning

  • Bae, Min-Suk;Park, Seung-Shik
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권2호
    • /
    • pp.95-104
    • /
    • 2013
  • The study of carbonaceous aerosols in the atmosphere is critical to understand the role of aerosols in human health and climate. Using standardized thermal optical transmittance methods, organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC) were determined using a combustion sampling system for four types of agricultural crop residues (rice straw, red pepper stems, soybean stems, and green perilla stems) and eight types of forest trees (pine stems, pine needles, ginkgo stems, ginkgo leaves, maple stems, maple leaves, cherry stems, and cherry leaves). The aerosol particles between 0.056 and $5.6{\mu}m$ in size were analyzed using a Micro-Orifice Uniform Deposit Impactor (MOUDI). In the current study, the Carbonaceous Thermal Distribution (CTD) by carbon analyzer was discussed in order to understand the carbon fractions from the twelve types of biomass burning. Also, the concentration of OC, EC, WSOC, and water insoluble organic carbon (WIOC) detected in the emissions were described.

Application of a Membrane Desolvator to the Analysis of Organic Solvents in Inductively Coupled Plasma Atomic Emission Spectrometry

  • Lee, J. S.;Lim, H. B.
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권9호
    • /
    • pp.1040-1044
    • /
    • 1999
  • A micro porous PTFE membrane desolvator (MMD) was built and evaluated for the on-line removal of organic solvents to facilitate the determination of trace metal contaminants in the solvents by ICP-AES. Three organic solvents, isopropyl alcohol (IPA), methanol, and dimethy sulfoxide (DMSO) were studied. The MMD reduced organic solvent concentration in the sample aerosol stream by 82% to 89%, as indicated by monitoring C(I) emission. Net signal intensity of Fe, Al, and Cu was increasing with higher organic solvent concentration, with the rate of increase being solvent dependent. The signal intensities for Mg and Pb followed the trend with the C(I) signal. Changing the sweep gas flow rate affected the optimum signal intensity. Wine samples were analyzed by the method of standard addition. The concentrations of B, Al, and Mg were determined with a relative precision of less than 2.3%.

Characterization of Particulate Emissions from Biodiesel using High Resolution Time of Flight Aerosol Mass Spectrometer

  • Choi, Yongjoo;Choi, Jinsoo;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.78-85
    • /
    • 2015
  • In the past several decades, biofuels have emerged as candidates to help mitigate the issues of global warming, fossil fuel depletion and, in some cases, atmospheric pollution. To date, the only biofuels that have achieved any significant penetration in the global transportation sector are ethanol and biodiesel. The global consumption of biodiesel was rapidly increased from 2005. The goal of this study was to examine the chemical composition on particulate pollutant emissions from a diesel engine operating on several different biodiesels. Tests were performed on non-road diesel engine. Experiments were performed on 5 different fuel blends at 2 different engine loading conditions (50% and 75%). 5 different fuel blends were ultra-low sulfur diesel (ULSD, 100%), soy biodiesel (Blend 20% and Blend 100%) and canola biodiesel (Blend 20% and Blend 100%). The chemical properties of particulate pollutants were characterized using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Organic matter and nitrate were generally the most abundant aerosol components and exhibited maximum concentration of $1207{\mu}g/m^3$ and $30{\mu}g/m^3$, respectively. On average, the oxidized fragment families ($C_xH_yO_1{^+}$, and $C_xH_yO_z{^+}$) account for ~13% of the three family sum, while ~87% comes from the $C_xH_y{^+}$ family. The two peaks of $C_2H_3O_2$ (m/z 59.01) and $C_3H_7O$ (m/z 59.04) located at approximately m/z 59 could be used to identify atmospheric particulate matter directly to biodiesel exhaust, as distinguished from that created by petroleum diesel in the AMS data.

해양환경의 에어로졸 화학- 농도와 함량비를 이용한 이온성분간의 관계에 대한 추론 (Aerosol Chemistry in the Marine Environment: Inference of Inter-logic Relationships from the Concentrations and Ratios of Sonic Constituents)

  • 김기현;이강웅
    • 한국대기환경학회지
    • /
    • 제14권2호
    • /
    • pp.143-152
    • /
    • 1998
  • The aerosol concentrations of ionic components were measured on a daily basis from a coastal monitoring site located at Kosan, Cheju Island from 26 September to 5 October 1997 as a field-intensive for a LRTAP project The chemical species we investigated include most of important inorganic species (i.e., Cl-, NO3-, F-, SO42-, Na+, NH4+, and K+) and some organic species (i.e. formats, acetate, and methanesulfonate (MSA) ions). The concentration data of those important inorganic and organic species obtained during this study were evaluated to properly address their chemical and physical characteristics. Most of major inorganic components including sulfate, sodium, chloride, and potassium ions exhibited very conservative relationships with each other such that the concentration ratios of any pair are quite analogous to that of seawater ratio. Since the oceans serve as the major sources of ionic constituents, their concentration changes appear to be senstively reflected by the factors affecting air-sea processes such as an increase in wind speed or changes in wind direction. A comparative analysis of sulfur-containing species such as seasalt (SS) and nonseasalt (NSS) sulfate and MSA were also made to assess the factors influencing the S cycling. An evaluation of NSS/SS ratios suggests that most of sulfate be associated with NSS fraction rather than 55 one. The finding of lower MSA/NSS-SO42- ratio along with a line of physical evidence such as intrusion of anthropogenically affected air mass suggests that the oxidation of S species have been promoted under the conditions encountered during the study period. Finally, the concentration data of carboxylic species (such as formats and acetate ions) were also analyzed. Although the existence of temporal trends were difficult to assess, these data indicate that their contribution to the precipitation acidity may not be significant enough.

  • PDF

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 1: A Preliminary Study of the Effect of Fog Deposition on Behavior of Particles Deposited on the Leaf Surfaces by Microscopic Observation and Leaf-washing Technique

  • Watanabe, Yoko;Yamaguchi, Takashi;Katata, Genki;Noguchi, Izumi
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2013
  • To establish the method for investigating the behavior of aerosol particles deposited on the leaf surface against fog water under natural conditions, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analysis and wash water analysis by ion chromatography after the washing treatment were performed using leaves of white birch collected from low part of the tree crown and the top of the tree in Sapporo City, Hokkaido, northern Japan. Each of collected leaves was divided into two parts according to the treatment performed: leaf surface (adaxial side) was 1) untreated, and 2) washed with deionized water with a pipette. In untreated samples, many particles of various shapes, including soil particles and organic debris, were deposited on the surface. Particles containing S were found on the surface of samples collected from only low part of the tree crown. After the washing treatment, SEM-EDX analysis revealed that soil particles and particles containing S had been washed off with water, although some particles such as soil particles and organic debris still remained on the leaf surface. The major anion such as $SO{_4}^{2-}$ was detected in wash water of all samples, although the peak of S in X-ray spectra was not detected from samples collected at top of the tree. The combination of SEM-EDX analysis with wash water analysis indicated that $SO{_4}^{2-}$ was deposited on the leaf surface in dissolved state and/or in state of submicron particles. These results suggested that fog water could remove soil particles and particles containing S and $SO{_4}^{2-}$ from the leaf surfaces, but not all particles. There was no difference in sampling position in the tree crown. Our study suggested that combination with SEM-EDX analysis and wash water analysis would be effective for investigation of the behavior of particles on the leaf surface against fog water.