DOI QR코드

DOI QR Code

Thermal Distribution of Size-resolved Carbonaceous Aerosols and Water Soluble Organic Carbon in Emissions from Biomass Burning

  • Bae, Min-Suk (Department of Environmental Engineering, Mokpo National University) ;
  • Park, Seung-Shik (Department of Environmental Engineering, Chonnam National University)
  • Received : 2013.03.17
  • Accepted : 2013.05.28
  • Published : 2013.06.30

Abstract

The study of carbonaceous aerosols in the atmosphere is critical to understand the role of aerosols in human health and climate. Using standardized thermal optical transmittance methods, organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC) were determined using a combustion sampling system for four types of agricultural crop residues (rice straw, red pepper stems, soybean stems, and green perilla stems) and eight types of forest trees (pine stems, pine needles, ginkgo stems, ginkgo leaves, maple stems, maple leaves, cherry stems, and cherry leaves). The aerosol particles between 0.056 and $5.6{\mu}m$ in size were analyzed using a Micro-Orifice Uniform Deposit Impactor (MOUDI). In the current study, the Carbonaceous Thermal Distribution (CTD) by carbon analyzer was discussed in order to understand the carbon fractions from the twelve types of biomass burning. Also, the concentration of OC, EC, WSOC, and water insoluble organic carbon (WIOC) detected in the emissions were described.

Keywords

References

  1. Baddock, M.C., Strong, C.L., Murray, P.S., McTainsh, G.H. (2013) Aeolian dust as a transport hazard. Atmospheric Environment 71, 7-14. https://doi.org/10.1016/j.atmosenv.2013.01.042
  2. Bae, M., Schauer, J.J., DeMinter, J.T., Turner, J.R., Smith, D., Cary, R.A. (2004) Validation of a Semi-Continuous Instrument for Elemental Carbon and Organic Carbon Using a Thermal-Optical Method. Atmospheric Environment 38, 2885-2893. https://doi.org/10.1016/j.atmosenv.2004.02.027
  3. Bae, M.S., Lee, J.Y., Kim, Y.P., Oak, M.H., Shin, J.S., Lee, K.Y., Lee, H., Lee, S.Y., Kim, Y.J. (2012) Analytical Methods of Levoglucosan, a Tracer for Cellulose in Biomass Burning, by Four Different Techniques. Asian Journal of Atmospheric Environment 6(1), 53-66. https://doi.org/10.5572/ajae.2012.6.1.053
  4. Birch, M. (1998) Analysis of carbonaceous aerosols: interlaboratory comparison. The Analyst 123, 851-857. https://doi.org/10.1039/a800028j
  5. Birch, M., Cary, R. (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Science Technology 25, 221-241. https://doi.org/10.1080/02786829608965393
  6. Chow, J., Watson, J., Chen, L., Chang, M., Robinson, N., Trimble, D., Kohl, S. (2007) The IMPROVE_A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. Journal of the Air & Waste Management Association 57, 1014-1023. https://doi.org/10.3155/1047-3289.57.9.1014
  7. Kleeman, M.J., Robert, M.A., Riddle, S.G., Fine, P.M., Hays, M.D., Schauer, J.J., Hannigan, M.P. (2008) Size distribution of trace organic species emitted from biomass combustion and meat charbroiling. Atmospheric Environment 42, 3059-3075. https://doi.org/10.1016/j.atmosenv.2007.12.044
  8. Miller-Schulze, J.P., Shafer, M.M., Schauer, J.J., Solomon, P.A., Lantz, J., Artamonova, M., Chen, B., Imashev, S., Sverdlik, L., Carmichael, G.R., Deminter, J.T. (2011) Characteristics of fine particle carbonaceous aerosol at two remote sites in Central Asia. Atmospheric Environment 45, 6955-6964. https://doi.org/10.1016/j.atmosenv.2011.09.026
  9. Novakov, T., Corrigan, C. (1996) Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophys Research Letter 23, 2141-2144. https://doi.org/10.1029/96GL01971
  10. Park, R.J., Kim, M.J., Jeong, J.I., Youn, D.Y., Kim, S. (2010) A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia. Atmospheric Environment 44, 1414-1421. https://doi.org/10.1016/j.atmosenv.2010.01.042
  11. Park, S.S., Sim, S.Y., Bae, M.S., Schauer, J.J. (2013) Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmospheric Environment 73, 62-72. https://doi.org/10.1016/j.atmosenv.2013.03.025
  12. Pathak, R.K., Wang, T., Ho, K.F., Lee, S.C. (2011) Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmospheric Environment 45, 318-325. https://doi.org/10.1016/j.atmosenv.2010.10.021
  13. Peralta, O., Baumgardner, D., Raga, G. (2007) Spectrothermography of Carbonaceous particles. Journal of Atmospheric Chemistry 57, 153-169. https://doi.org/10.1007/s10874-007-9070-1
  14. Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T. (2001) Measurement of Emissions from Air Pollution Sources. 3. C1-C29 Organic Compounds from Fireplace Combustion of Wood. Environmental Science & Technology 35, 1716-1728. https://doi.org/10.1021/es001331e
  15. Schneidemesser, E., Zhou, J., Stone, E.A., Schauer, J.J., Qasrawi, R., Abdeen, Z., Shpund, J., Vanger, A., Sharf, G., Moise, T., Brenner, S., Nassar, K., Saleh, R., Al-Mahasneh, Q.M., Sarnat, J.A. (2010) Seasonal and spatial trends in the sources of fine particle organic carbon in Israel, Jordan, and Palestine. Atmospheric Environment 44, 3669-3678. https://doi.org/10.1016/j.atmosenv.2010.06.039
  16. Smith, K.R. (2000) National burden of disease in India from indoor air pollution. Proceedings of the National Academy of Sciences USA 97, 13286-13293 https://doi.org/10.1073/pnas.97.24.13286
  17. Sullivan, A.P., Weber, R.J. (2006) Chemical characterization of the ambient organic aerosol soluble in water: 2. isolation of acid, neutral, and basic fractions by modified size-exclusion chromatography. Journal of Geophysical Research 111, D05315. doi:10.1029/2005JD006486.
  18. Thompson, J.E., Hayes, P.L., Jimenez, J.L., Adachi, K., Zhang, X., Liu, J., Weber, R.J., Buseck, P.R. (2012) Aerosol optical properties at Pasadena, CA during CalNex 2010. Atmospheric Environment 55, 190-200. https://doi.org/10.1016/j.atmosenv.2012.03.011
  19. Vivanco, M.G., Santiago, M., Martinez-Tarifa, A., Borras, E., Rodenas, M., Garcia-Diego, C., Sanchez, M. (2011) SOA formation in a photoreactor from a mixture of organic gases and HONO for different experimental conditions. Atmospheric Environment 45, 708-715. https://doi.org/10.1016/j.atmosenv.2010.09.059
  20. Zhang, Y., Sheesley, R.J., Bae, M.S., Schauer, J.J. (2009) Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations. Atmospheric Environment 43, 4951-4958. https://doi.org/10.1016/j.atmosenv.2009.07.009

Cited by

  1. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter vol.18, pp.1, 2016, https://doi.org/10.1039/C5EM00423C
  2. Source contributions and potential source regions of size-resolved water-soluble organic carbon measured at an urban site over one year vol.18, pp.10, 2016, https://doi.org/10.1039/C6EM00416D
  3. Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles vol.34, pp.3, 2018, https://doi.org/10.5572/KOSAE.2018.34.3.418
  4. Chemical Characteristics of Size-Resolved Aerosols in Coastal Areas during KORUS-AQ Campaign; Comparison of Ion Neutralization Model vol.55, pp.3, 2013, https://doi.org/10.1007/s13143-018-00099-1
  5. Mass Size Distributions of Water-soluble Organic and Inorganic Species in Ambient Air at an Urban Site in Gwangju during November 2019 vol.37, pp.1, 2013, https://doi.org/10.5572/kosae.2021.37.1.066