• Title/Summary/Keyword: Organic Thin-Film Transistor

Search Result 285, Processing Time 0.043 seconds

An Organic Electrophosphorescent Device Driven by All-Organic Thin-Film Transistor using Polymeric Gate Insulator

  • Pyo, S.W.;Shim, J.H.;Kim, Y.K.
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we demonstrate that the organic electrophosphorescent device is driven by the organic thin film transistor with spin-coated photoacryl gate insulator. It was found that electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure showed the non-saturated slope in the saturation region and the sub-threshold nonlinearity in the triode region, where we obtained the maximum power luminance that was about 90 $cd/m^2$. Field effect mobility, threshold voltage, and on-off current ratio in 0.45 ${\mu}m$ thick gate dielectric layer were 0.17 $cm^2/Vs$, -7 V, and $10^6$ , respectively. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and cured at 150${\sqsubset}$for 1hr. It was also found that field effect mobility, threshold voltage, on-off current ratio, and sub-threshold slope with 0.45 ${\mu}m$ thick gate dielectric films were 0.134 $cm^2/Vs$, -7 V, and $10^6$ A/A, and 1 V/decade, respectively.

Organization of pentacene molecules using an ion-beam treatment for organic thin film transistors (OTFT 특성향상을 위한 이온빔 정렬처리 통한 펜타센 분자의 비등방 정렬)

  • Kim, Young;Kim, Byeong-Young;Kim, Dae-Hyun;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.116-116
    • /
    • 2009
  • This paper focuses on improving organic thin film transistor (OTFT) characteristics by controlling the self-organization of pentacene molecules with an alignable high-dielectric-constant film. The process, based on the growth of pentacene film through high-vacuum sublimation, is a method of self-organization using ion-beam (IB) bombardment of the $HfO_2/Al_2O_3$ surface used as the gate dielectric layer. X-ray photoelectron spectroscopy indicates that the IB raises the rate of the structural anisotropy of the $HfO_2/Al_2O_3$ film, and X-ray diffraction patterns show the possibility of increasing the anisotropy to create the self-organization of pentacene molecules in the first polarized monolayer.

  • PDF

Improvement of Electrical and Mechanical Characteristics of Organic Thin Film Transistor with Organic/Inorganic Laminated Gate Dielectric (유연성 유기 박막트랜지스터 적용을 위한 다층 게이트 절연막의 전기적 및 기계적 특성 향상 연구)

  • Noh, H.Y.;Seol, Y.G.;Kim, S.I.;Lee, N.E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this work, improvement of mechanical and electrical properties of gate dielectric layer for flexible organic thin film transistor (OTFT) devices was investigated. In order to increase the mechanical flexibility of PVP (poly(4-vinyl phenol) organic gate dielectric, a very thin inorganic $HfO_2$ layers with the thickness of $5{\sim}20nm$ was inserted in between the spin-coated PVP layers. Insertion of the inorganic $HfO_2$ in the laminated organic/inorganic structure of PVP/$HfO_2$/PVP layer led to a dramatic reduction in the leakage current compared to the pure PVP layer. Under repetitive cyclic bending, the leakage current density of the laminated PVP/$HfO_2$/PVP layer with the thickness of 20-nm $HfO_2$ layer was not changed, while that of the single PVP layer was increased significantly. Mechanical flexibility tests of the OTFT devices by cyclic bending with 5 mm bending radius indicated that the leakage current of the laminated PVP/$HfO_2$(20 nm)/PVP gate dielectric in the device structure was also much smaller than that of the single PVP layer.

Organic Passivation Material-Polyvinyl Alcohol (PVA)/Layered Silicate Nanocomposite-for Organic Thin Film Transistor

  • Ahn, Taek;Suk, Hye-Jung;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1539-1542
    • /
    • 2007
  • We have synthesized novel organic passivation materials to protect organic thin film transistors (OTFTs) from $H_2O$ and $O_2$ using polyvinyl alcohol (PVA)/layered silicate (SWN) nano composite system. Up to 3 wt% of layered silicate to PVA, very homogeneous nanocomposite solution was prepared.

  • PDF

A Study on the Electrical Characteriatics and Fabrication for Organic Thin Film Transistor Using $\alpha$-67(sexithiophene) ($\alpha$-6T(sexithiophene)을 이용한 유기 박막 트랜지스터 제작 및 전기적 특성 연구)

  • 김옥병;김대엽;표상우;이한성;김정수;김영관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.586-589
    • /
    • 1999
  • Organic semiconductors based on conjugated thiophene oligomer have great potential to be utilized as an active layer far electronic and optoelectronic devices. In this study, $\alpha$ -sexithiophene($\alpha$-6T) thin films and various electrode materials were deposited by Organic Molecular Beam Deposition(OMBD) and vacuum evaporation respectively. Those films were photolithographically patterned fur measurements. Electrical characterization of the thin film transistor with various channel length were measured, and field effect mobility is calculated by formula.

  • PDF

3.5-Inch QCIF AMOLED Panels with Ultra-low-Temperature Polycrystalline Silicon Thin Film Transistor on Plastic Substrate

  • Kim, Yong-Hae;Chung, Choong-Heui;Moon, Jae-Hyun;Lee, Su-Jae;Kim, Gi-Heon;Song, Yoon-Ho
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.308-314
    • /
    • 2008
  • In this paper, we describe the fabrication of 3.5-inch QCIF active matrix organic light emitting display (AMOLED) panels driven by thin film transistors, which are produced by an ultra-low-temperature polycrystalline silicon process on plastic substrates. The over all processing scheme and technical details are discussed from the viewpoint of mechanical stability and display performance. New ideas, such as a new triple-layered metal gate structure to lower leakage current and organic layers for electrical passivation and stress reduction are highlighted. The operation of a 3.5-inch QCIF AMOLED is also demonstrated.

  • PDF

Investigation on Electrical Properties of TIPS Pentacene Organic Thin-film Transistors by Cr Thickness of Suspended Source/Drain

  • Kim, Kyung-Seok;Chung, Kwan-Soo;Kim, Yong-Hoon;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1288-1291
    • /
    • 2007
  • We investigated the effect of Cr thickness on the electrical properties of triisopropylsilyl pentacene organic thin-film transistor (OTFT) employing suspended source-drain electrode. With Cr thickness of 10 nm, the field-effect mobility, on/off ratio and subthreshold slope were $0.017\;cm^2/Vs$, $8.78\;{\times}\;10^3$ and 10 V/decade, respectively. By increasing the Cr thickness to 100 nm, the fieldeffect mobility was increased to $0.032\;cm^2/Vs$, on/off ratio to $1.12{\times}10^5$ and subthreshold slope to 1 V/decade.

  • PDF

A Study on the Electrical Characteristics of Organic Thin Film Transistor using Photoacryl as Gate Dielectric Layer (Photoacryl을 게이트 절연층으로 사용한 유기 박막 트랜지스터의 전기적 특성에 관한 연구)

  • 김윤명;표상우;심재훈;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.247-250
    • /
    • 2001
  • Organic semiconductors based on vacuum-deposited films of fused-ring polycyclic aromatic hydrocarbon have great potential to be utilized as an active layer for electronic and optoelectronic devices. We have fabricated organic thin film transistors(OTFTs) and discuss electrical characteristics of the devices. For the gate dielectric layer, OPTMER PC403 photoacryl(JSR Co.) was spin-coated and cured at 220$^{\circ}C$. Electrical characteristics of the device were investigated, where the photoacryl dielectric layer thickness and pentacene active layer thickness were about 0.6$\mu\textrm{m}$ and 800${\AA}$.

  • PDF

Molecular Distribution depending on the Cooling-off Condition in a Solution-Processed 6,13-Bis(triisopropylsilylethynyl)-Pentacene Thin-Film Transistor

  • Park, Jae-Hoon;Bae, Jin-Hyuk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.402-407
    • /
    • 2014
  • Herein, we describe the effect of the cooling-off condition of a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) film on its molecular distribution and the resultant electrical properties. Since the solvent in a TIPS-pentacene droplet gradually evaporates from the rim to the center exhibiting a radial form of solute, for a quenched case, domains of the TIPS-pentacene film are aboriginally spread showing original features of radial shape due to suppressed molecular rearrangement during the momentary cooling period. For the slowly cooled case, however, TIPS-pentacene molecules are randomly rearranged during the long cooling period. As a result, in the lopsided electrodes structure proposed in this work, the charge transport generates more effectively under the case for radial distribution induced by the quenching technique. It was found that the molecular redistribution during the cooling-period plays an important role on the magnitude of the mobility in a solution-processed organic transistor. This work provides at least a scientific basis between the molecular distribution and electrical properties in solution-processed organic devices.

Comparative Study on Interfacial Traps in Organic Thin-Film Transistors According to Deposition Methods of Organic Semiconductors

  • Park, Jae-Hoon;Bae, Jin-Hyuk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.290-296
    • /
    • 2013
  • We analysed interfacial traps in organic thin-film transistors (TFTs) in which pentacene and 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) organic semiconductors were deposited by means of vacuum-thermal evaporation and drop-coating methods, respectively. The thermally-deposited pentacene film consists of dentritic grains with the average grain size of around 1 m, while plate-like crystals over a few hundred microns are observed in the solution-processed TIPS-pentacene film. From the transfer characteristics of both TFTs, lower subthreshold slope of 1.02 V/decade was obtained in the TIPS-pentacene TFT, compared to that (2.63 V/decade) of the pentacene transistor. The interfacial trap density values calculated from the subthreshold slope are about $3.4{\times}10^{12}/cm^2$ and $9.4{\times}10^{12}/cm^2$ for the TIPS-pentacene and pentacene TFTs, respectively. Herein, lower subthreshold slope and less interfacial traps in TIPS-pentacene TFTs are attributed to less domain boundaries in the solution-processed TIPS-pentacene film.