DOI QR코드

DOI QR Code

Molecular Distribution depending on the Cooling-off Condition in a Solution-Processed 6,13-Bis(triisopropylsilylethynyl)-Pentacene Thin-Film Transistor

  • Park, Jae-Hoon (Department of Electronic Engineering, Hallym University) ;
  • Bae, Jin-Hyuk (School of Electronics Engineering, Kyungpook National University)
  • Received : 2014.07.30
  • Accepted : 2014.09.17
  • Published : 2014.09.30

Abstract

Herein, we describe the effect of the cooling-off condition of a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) film on its molecular distribution and the resultant electrical properties. Since the solvent in a TIPS-pentacene droplet gradually evaporates from the rim to the center exhibiting a radial form of solute, for a quenched case, domains of the TIPS-pentacene film are aboriginally spread showing original features of radial shape due to suppressed molecular rearrangement during the momentary cooling period. For the slowly cooled case, however, TIPS-pentacene molecules are randomly rearranged during the long cooling period. As a result, in the lopsided electrodes structure proposed in this work, the charge transport generates more effectively under the case for radial distribution induced by the quenching technique. It was found that the molecular redistribution during the cooling-period plays an important role on the magnitude of the mobility in a solution-processed organic transistor. This work provides at least a scientific basis between the molecular distribution and electrical properties in solution-processed organic devices.

Keywords

References

  1. G. H. Gelinck, H. E. Huitema, E. V. Veenendall, E. Cantatore, L. Schrijnemakers, J. B. P. H. V. D. Putten, T. C. T. Genus, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. V. Rens, D. M. De. Leeuw, "Flexible Active-Matrix Displays and Shift Registers Based on Solution-Processed Organic Transistors", Nat. Mater. 3, 106 (2004). https://doi.org/10.1038/nmat1061
  2. Z.-T. Zhu, J. T. Mason, R. Dieckmann, G. G. Malliaras, "Humidity Sensors Based on Pentacene Thin-Film Transistors", Appl. Phys. Lett. 81, 4643 (2002). https://doi.org/10.1063/1.1527233
  3. D. Voss, "Cheap and Cheerful Circuits", Nature 407, 442 (2000). https://doi.org/10.1038/35035212
  4. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nat. Mater. 8, 494 (2009). https://doi.org/10.1038/nmat2459
  5. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, "High-Resolution Inkjet Printing of All-Polymer Transistor Circuits", Science 290, 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  6. H. B. Akkerman, H. Li, Z. Bao, "TIPS-Pentacene Crystalline Thin Film Growth", Org. Electron. 13, 2056 (2012). https://doi.org/10.1016/j.orgel.2012.06.019
  7. J.-H. Kwon, J.-H. Seo, S.-I. Shin, J.-H. Kim, D. H. Choi, I. B. Kang, H. Kang, B. K. Ju, "A 6,13-bis(triisopropylsilylethynyl) pentacene thin-film transistor using a spun-on inorganic gate-dielectric", IEEE Trans. Electron Devices 55, 500 (2008). https://doi.org/10.1109/TED.2007.913007
  8. S.-I. Shin, J.-H. Kwon, H. Kang, B.-K. Ju, "Solution-processed 6,13-bis (triisopropylsilylethynyl)(TIPS) pentacene thin-film transistors with a polymer dielectric on a flexible substrate", Semicond. Sci. Technol. 23, 085009 (2008). https://doi.org/10.1088/0268-1242/23/8/085009
  9. C.-M. Keum, J.-H. Bae, W.-H. Kim, M.-H. Kim, J. Park, S.-D. Lee, "Effect of thermo-gradient-assisted solvent evaporation on the enhancement of the electrical properties of 6,13-bis (triisopropylsilylethynyl)-pentacene thin-film transistors", J. Korean Phys. Soc. 58, 1479 (2011). https://doi.org/10.3938/jkps.58.1479
  10. H. A. Becerril, M. E. Roberts, Z. Liu, J. Locklin, Z. Bao, "High-performance organic thin-film transistors through solution-sheared deposition of smallmolecule organic semiconductors", Adv. Mater. 20, 2588 (2008). https://doi.org/10.1002/adma.200703120
  11. W. H. Lee, D. H. Kim, Y. S. Jang, J. H. Cho, M. K. Hwang, Y. D. Park, Y. H. Kim, J. I. Han, K. Cho, "Solutionprocessable pentacene microcrystal arrays for high performance organic field-effect transistors", Appl. Phys. Lett. 90, 132106 (2007). https://doi.org/10.1063/1.2717087
  12. D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, J. E. Anthony, "Contactinduced crystallinity for high-performance soluble acene-based transistors and circuits", Nat. Mater. 7, 216 (2008). https://doi.org/10.1038/nmat2122
  13. J.-H. Bae, J. Kim, W.-H. Kim, S.-D. Lee, "Importance of the functional group density of a polymeric gate insulator for organic thin-film transistors", Jpn. J. Appl. Phys. 46, 385 (2007). https://doi.org/10.1143/JJAP.46.385
  14. J.-H. Bae, J. Park, C.-M. Keum, W.-H. Kim, M.-H. Kim, S.-O. Kim, S. K. Kwon, S.-D. Lee, "Thermal annealing effect on the crack development and the stability of 6,13-bis(triisopropylsilylethynyl) -pentacene field-effect transistors with a solution-processed polymer insulator", Org. Electron. 11, 784 (2010). https://doi.org/10.1016/j.orgel.2010.01.019
  15. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops", Nature 389, 827 (1997). https://doi.org/10.1038/39827
  16. Z. He, J. Chen, Z. Sun, G. Szulczewski, D. Li, "Air-flow navigated crystal growth for TIPS pentacene-based organic thin-film transistors", Org. Electron. 13, 1819 (2012). https://doi.org/10.1016/j.orgel.2012.05.044
  17. S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, C. J. Chang, "Influence of postannealing of polycrystalline pentacene thin film transistor", J. Appl. Phys. 95, 2293 (2004). https://doi.org/10.1063/1.1643189
  18. J.-H. Bae, Y. Choi, "Reduction of the trap density at the organic-organic interface and resultant gate-bias dependency of the mobility in an organic thin-film transistor", Solid State Electron. 72, 44 (2012). https://doi.org/10.1016/j.sse.2012.01.001
  19. C. D. Sheraw, T. N. Jackson, D. L. Eaton, J. E. Anthony, "Functionalized pentacene active layer organic thin-film transistors", Adv. Mater. 15, 2009 (2003). https://doi.org/10.1002/adma.200305393
  20. C. D. Dimitrakopoulos, D. J. Mascaro, "Organic thin-film transistors: A review of recent advances", IBM J. Res. Dev. 45, 11 (2001). https://doi.org/10.1147/rd.451.0011