• Title/Summary/Keyword: Organic Rankine Cycle

Search Result 117, Processing Time 0.027 seconds

An Experimental Study on the Organic Rankine Cycle to Utilize Fluctuating Thermal Energy (가변열원에 대응하기 위한 ORC 사이클의 실험적인 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2015
  • The system design of the Organic Rankine Cycle(ORC) is greatly influenced by the thermal properties such as the temperature or the thermal capacity of heat source. Typically waste heat, solar energy, geothermal energy, and so on are used as the heat source for the ORC. However, thermal energy supplying from these kinds of heat sources cannot be provided constantly. Hence, an experimental study was conducted to utilize fluctuating thermal energy efficiently. For this experiment, an impulse turbine and supersonic nozzles were applied and the supersonic nozzle was used to increase the velocity at the nozzle exit. In addition, these nozzles were used to adjust the mass flowrate depending on the amount of the supplied thermal energy. The experiment was conducted with maximum three nozzles due to the capacity of thermal energy. The experimented results were compared with the predicted results. The experiment showed that the useful output power could be producted from low-grade thermal energy as well as fluctuating thermal energy.

Experimental Research on an Organic Rankine Cycle Using Engine Exhaust Gas (엔진 배기열 이용 유기랭킨사이클에 대한 실험적 연구)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2012
  • In this study, an organic Rankine cycle(ORC) for gas engine waste heat recovery for industry has been constructed and a performance analysis test has been carried out. Shell & tube style heat exchanger has been equipped on an engine exhaust manifold in order to absorb heat of engine exhaust gas into the working fluid(refrigerant R134a). Under 60 kW of engine power output, about 63 kW of engine exhaust gas heat was discharged and the proportion of heat recovered was 68~73% while 43~46 kW of heat was absorbed into working fluid. Consequently rated power output of ORC was 4.6 kW while the ratio of rated power output to engine exhaust gas heat was 7.3%.

Study of Working Fluids on Thermodynamic Performance of Organic Rankine Cycle (ORC) (작동유체에 따른 유기랭킨사이클(ORC)의 열역학적 성능에 관한 연구)

  • Kim, Kyoung-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.223-231
    • /
    • 2011
  • The thermal efficiency of energy-to-power conversion becomes uneconomically low when the temperature of heat source drops below $370^{\circ}C$. ORC (Organic Rankine Cycle) has attracted much attention in last few years due to its potential in reducing consumption of fossil fuels and relaxing environmental problems, and its favorable characteristics to exploit low-temperature heat sources. In this work thermodynamic performance of ORC using nine working fluids is comparatively assessed. Special attention is paid to the effect of system parameters such as turbine inlet temperature and pressure on the characteristics of the system such as volumetric flow rate and quality at turbine exit, latent heat, net work as well as thermal efficiency. Results show that in selection of working fluid it is required to consider various criteria of performance characteristics as well as the thermal efficiency. Results also show that the system efficiencies become same irrespective of kind of working fluid when the temperature of heat source decreases to low range.

Effects of Working Fluids on the Performance Characteristics of Organic Rankine Cycle (ORC) Using LNG Cold Energy as Heat Sink (LNG 냉열을 열싱크로 이용하는 유기랭킨사이클(ORC)의 작동유체에 따른 성능 특성)

  • Kim, Kyoung Hoon;Ha, Jong Man;Kim, Kyung Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents thermodynamic performance analysis of organic Rankine cycle (ORC) using low temperature heat source in the form of sensible energy and using liquefied natural gas (LNG) as heat sink to recover the cryogenic energy of LNG. LNG is able to condense the working fluid at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the mathematical model, a parametric analysis is conducted to examine the effects of eight different working fluids, the turbine inlet pressure and the condensation temperature on the system performance. The results indicate that the thermodynamic performance of ORC such as net work production or thermal efficiency can be significantly improved by the LNG cold energy.

Performance Characteristics of Combined Heat and Power Generation with Series Circuit Using Organic Rankine Cycle (유기랭킨사이클을 이용한 직렬 열병합 사이클의 성능 특성)

  • Kim, Kyoung-Hoon;Jung, Young-Guan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.699-705
    • /
    • 2011
  • A combined heat and power cogeneration system driven by low-temperature sources is investigated by the first and second laws of thermodynamics. The system consists of Organic Rankine Cycle (ORC) and an additional process heater as a series circuit. Seven working fluids of R152a, propane, isobutane, butane, R11, R123, isopentane and n-pentane are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid is considered to extract maximum power from the source. Results indicate that the second-law efficiency can be significantly increased due to the combined heat and power generation. Furthermore, higher source temperature and lower turbine inlet pressure lead to lower second-law efficiency of ORC system but higher that of combined system. Results also show that the optimum working fluid varies with the source temperature.

Theoretical Characteristics of Thermodynamic Performance of Combined Heat and Power Generation with Parallel Circuit using Organic Rankine Cycle (유기랭킨사이클을 이용한 병렬 열병합 발전시스템의 열역학적 이론 성능 특성)

  • Kim, Kyoung-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.49-56
    • /
    • 2011
  • In this study a novel cogeneration system driven by low-temperature sources at a temperature level below $190^{\circ}C$ is investigated by first and second laws of thermodynamics. The system consists of Organic Rankine Cycle(ORC) and an additional heat generation as a parallel circuit. Seven working fluids of R143a, R22, R134a, R152a, $iC_4H_{10}$(isobutane), $C_4H_{10}$(butane), and R123a are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid and optimum turbine inlet pressure are considered to extract maximum power from the source. Results show that due to a combined heat and power generation, both the efficiencies by first and second laws can be significantly increased in comparison to a power generation, however, the second law efficiency is more resonable in the investigation of cogeneration systems. Results also show that the working fluid for the maximum system efficiency depends on the source temperature.

Performance Analysis of 1MW Organic Rankine Cycle with Liquid-Vapor Ejector using Effluent from Power Plant (화력발전소 폐열에 따른 작동유체별 액-증기 이젝터를 적용한 1MW급 ORC의 성능 분석)

  • Kim, Hyeon-Uk;Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.120-125
    • /
    • 2014
  • In this paper, suitable working fluid of 1MW Organic Rankine Cycle(ORC) with liquid-vapor ejector using effluent from power plant is selected. The results of comparison performance of 5 refrigerants are as follows; R600a, R134a, R1270, R236fa, R235fa. The operating parameters considered in this study include the condensation capacity evaporation capacity and efficiency. As a result of comparison of basic ORC system and with liquid-vapor ejector, with ORC system presents the higher system efficiency since the ejector makes the turbine outlet pressure lower than condensation pressure through its pressure recovery. Also, this ejector ORC system is advantageous in miniaturizing the size of components owing to decrease of evaporation capacity and condensation capacity.

Development of a Numerical Analysis Model for Heating and Power Generation System Combining a Cattle Manure Solid Fuel Combustion Boiler and the Organic Rankine Cycle (우분 고체연료 연소 보일러와 유기랭킨사이클을 결합한 난방 및 발전 시스템의 수치해석 모델 개발)

  • Donghwan Shin;Hyeongwon Lee;Hoon Jung;Joonyoung Choi;Jongyoung Jo
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.61-71
    • /
    • 2023
  • The necessity of energy utilization using livestock manure has been proposed with the decrease in domestic agricultural land. Livestock manure solid fuel has been investigated as a promising energy resource owing to its convenient storage and use in agricultural and livestock fields. Additional electricity production is possible through the integration of a biomass combustion boiler with the organic Rankine cycle (ORC). In this study, a mathematical system model of the cattle manure solid fuel boiler integrated with the ORC was developed to analyze the components' performance under variable operating conditions. A sensitivity analysis was conducted to confirm the electrical efficiency of the ORC turbine and the applicability of this system. The minimum required waste heat recovery rate was derived considering the system marginal price and levelized cost of electricity of the ORC. The simulation results showed that, in Korea, more than 77.98% of waste heat recovery and utilization in ORC turbines is required to achieve economic feasibility through ORC application.

Performance Analysis of Direct Expansion and Organic Rankine Cycle for a LNG Cold Power Generation System (LNG냉열발전시스템에 있어서 직접팽창 및 유기랭킨사이클의 운전성능평가)

  • Cho, Eun-Bi;Jeong, Moon;Hwang, In-Ju;Kang, Choon-Hyoung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • The liquefaction to produce LNG (liquefied natural gas) is the only practical way for mass transportation of natural gas across oceans, which accompanies considerable energy consumption in LNG plants. Power generation is one of the effective utilization ways of LNG cold energy which evolves during the vaporization process of LNG with sea water. In this work, performance analysis of two cold energy generation processes, direct expansion and organic Rankine cycles, were carried out by using Aspen HYSYS simulation. The results show that the performance of the organic Rankine cycle is superior to the direct expansion.

Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle (유기랭킨사이클로 구동되는 증기압축냉동사이클의 엑서지 해석)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1137-1145
    • /
    • 2013
  • In this study, exergy analysis of a thermally activated refrigeration cycle, a combined organic Rankine cycle (ORC), and a vapor compression cycle (VCC) were conducted. It is considered that a system uses a low-temperature heat source in the form of sensible heat, such as various renewable energy sources or waste heat from industries, and one of eight working fluids: R143a, R22, R134a, propane, isobutane, butane, R245fa, or R123. The effects of turbine inlet pressure and the working fluid selected on the exergy destructions (anergies) at various system components as well as the COP and exergy efficiency of the system were analyzed and discussed. The results show that the component of the greatest exergy destruction in the system varies sensitively with the turbine inlet pressure and/or working fluid.