DOI QR코드

DOI QR Code

Development of a Numerical Analysis Model for Heating and Power Generation System Combining a Cattle Manure Solid Fuel Combustion Boiler and the Organic Rankine Cycle

우분 고체연료 연소 보일러와 유기랭킨사이클을 결합한 난방 및 발전 시스템의 수치해석 모델 개발

  • Donghwan Shin (Energy & Environment Laboratory, Korea Electric Power Research Institute) ;
  • Hyeongwon Lee (Energy & Environment Laboratory, Korea Electric Power Research Institute) ;
  • Hoon Jung (Energy & Environment Laboratory, Korea Electric Power Research Institute) ;
  • Joonyoung Choi (Energy & Environment Laboratory, Korea Electric Power Research Institute) ;
  • Jongyoung Jo (Energy & Environment Laboratory, Korea Electric Power Research Institute)
  • Received : 2023.07.20
  • Accepted : 2023.11.29
  • Published : 2023.12.25

Abstract

The necessity of energy utilization using livestock manure has been proposed with the decrease in domestic agricultural land. Livestock manure solid fuel has been investigated as a promising energy resource owing to its convenient storage and use in agricultural and livestock fields. Additional electricity production is possible through the integration of a biomass combustion boiler with the organic Rankine cycle (ORC). In this study, a mathematical system model of the cattle manure solid fuel boiler integrated with the ORC was developed to analyze the components' performance under variable operating conditions. A sensitivity analysis was conducted to confirm the electrical efficiency of the ORC turbine and the applicability of this system. The minimum required waste heat recovery rate was derived considering the system marginal price and levelized cost of electricity of the ORC. The simulation results showed that, in Korea, more than 77.98% of waste heat recovery and utilization in ORC turbines is required to achieve economic feasibility through ORC application.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20227410100080).

References

  1. Kim, Y.J., Kim, J.J., and Han, H.S., 2013, "The current status of agricultural energy production and consumption", Korea Rural Economic Institute, https://repository.krei.re.kr/bitstream/2018.oak/20655/1/%EB%86%8D%EC%97%85%EC%9A%A9%20%EC%97%90%EB%84%88%EC%A7%80%20%EC%83%9D%EC%82%B0%C2%B7%EC%9D%B4%EC%9A%A9%EC%8B%A4%ED%83%9C.pdf.
  2. Korea Energy Economics Institute and Korea Energy Agency, 2022, "2020 Energy consumption survey", Accessed 19 July 2023, https://www.energy.or.kr/front/board/List9.do.
  3. Korea Rural Economic Institute, 2023, "Agricultural outlook 2023 Korea", file:///C:/Users/KSNRE/Downloads/E04-2023-1.pdf.
  4. Kang, M.S., Kim, K.H., Koo, K.W., and Park, S.H., 2023, "A study that certification RE100 of pig breeding house by utilization livestock manure", The transactions of The Korean Institute of Electrical Engineers, 72(3), 453-458. https://doi.org/10.5370/KIEE.2023.72.3.453
  5. Ministry of Environment, 2023, "Statistics of livestock manure generation and treatment in 2020", Accessed 19 July 2023, https://www.me.go.kr/home/web/policy_data/read.do?menuId=10263&seq=8039.
  6. Cho, E.S., Yi, S.R., Yoon, Y.M., Shin, D.W., and Hwang, B.E., 2019, "A study on sustainable livestock manure management", Korea Environment Institute.
  7. Yang, S.H., Park, K.H., Cho, S.B., Hwang, O.H., and Kwak, J.H., 2010, "Research on greenhouse gas emissions from livestock manure treatment processes", Rural Development Administration, https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO201200000010&dbt=TRKO&rn=.
  8. Kebreab, E., Clark, K., Wagner-Riddle, C., and France, J., 2006, "Methane and nitrous oxide emissions from canadian animal agriculture: A review", Canadian Journal of Animal Science, 86(2), 135-157. https://doi.org/10.4141/A05-010
  9. McGinn, S.M., 2006, "Measuring greenhouse gas emissions from point sources in agriculture", Canadian Journal of Soil Science, 86(3), 355-371. https://doi.org/10.4141/S05-099
  10. Dagnall, S., Hill, J., and Pegg, David, 2000, "Resource mapping and analysis of farm livestock manures-assessing the opportunities for biomass-to-energy schemes", Bioresour. Technol., 71(3), 225-234. https://doi.org/10.1016/S0960-8524(99)00076-0
  11. Caetano, B.C., Santos, N.D.S.A., Hanriot V.M., Sandoval, O.R., and Huebner, R., 2022, "Energy conversion of biogas from livestock manure to electricity energy using a stirling engine", Energy Conversion and Management: X, 15, 100224.
  12. Afazeli, H., Jafari, A., Rafiee, S., and Nosrati, M., 2014, "An investigation of biogas production potential from livestock and slaughterhouse wastes", Renewable and Sustainable Energy Reviews, 34, 380-386. https://doi.org/10.1016/j.rser.2014.03.016
  13. Oshita, K., Toda, S., Takaoka, M., Kanda, H., Fujimori, T., Matsukawa, K., and Fujiwara, T., 2015, "Solid fuel production from cattle manure by dewatering using liquefied dimethyl ether", Fuel, 159, 7-14. https://doi.org/10.1016/j.fuel.2015.06.063
  14. Jeong, K.H., Lee, D.J., Lee, D.H., and Lee, S.H., 2019, "Combustion characteristics of cow manure pellets as a solid fuel source", Journal of the Korea Organic Resources Recycling Association, 27(2), 31-40.
  15. Zhang, Q., Hu, J., and Lee, D.J., 2016, "Biogas from anaerobic digestion processes: Research updates", Renewable Energy, 98, 108-119. https://doi.org/10.1016/j.renene.2016.02.029
  16. Santos, N.D.S.A., Roso, V.R., Malaquias, A.C.T., and Baeta, J.G.C., 2021, "Internal combustion engines and biofuels: Examining why this robust combustion should not be ignored for future sustainable transportation", Renewable and Sustainable Energy Reviews, 148, 111292.
  17. Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., and Mekhilef, S., 2011, "A review on biomass as a fuel for boilers", Renewable and Sustainable Energy Reviews, 15(5), 2262-2289. https://doi.org/10.1016/j.rser.2011.02.015
  18. Szymajda, A., Laska, G., and Joka, M., 2021, "Assessment of cow dung pellets as a renewable solid fuel in direct combustion technologies", Energies, 14(4), 1192.
  19. Lee, S., Yu, B., Ju, S., Kang, Y., and Jung, G., 2016, "Characteristics analysis for solid fuel from swine manure", JOURNAL OF KSWM, 33(7), 654-658. https://doi.org/10.9786/kswm.2016.33.7.654
  20. Lee, S., Yu, B., Ju, S., Kang, Y., and Jung, G., 2016, "Characteristics of solid fuel from cattle manure", New. Renew. Energy, 12(4), 64-69. https://doi.org/10.7849/ksnre.2016.12.12.4.064
  21. Dimache, A., O'Conner, J., and Kearney, D., 2014, "Environmental analysis of the use of poultry manure as fuel for combustion on broiler farms: A case study", BHSL, https://core.ac.uk/download/pdf/51065513.pdf.
  22. BHSL, "FBC 2400 CHP", http://bhsl.com.
  23. Yamada, N., Tominaga, Y., and Yoshida, T., 2014, "Demonstration of 10-Wp micro organic rankine cycle generator for low-grade heat recovery", Energy, 78, 806-813. https://doi.org/10.1016/j.energy.2014.10.075
  24. Gao, H., Liu, C., He, C., Xu, X., Wu, S., and Li, Y., 2012, "Performance analysis and working fluid selection of a supercritical organic rankine cycle for low grade waste heat recovery", Energies, 5(9), 3233-3247. https://doi.org/10.3390/en5093233
  25. Braimakis, K., Mikelis, A., Charalampidis, A., and Karellas, S., 2020, "Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery", Energy, 203, 117801.
  26. Bahrami, M., Pourfayaz, F., and Kasaeian, A., 2022, "Low global warming potential (GWP) working fluids (WFs) for organic rankine cycle (ORC) applications", Energy Reports, 8, 2976-2988. https://doi.org/10.1016/j.egyr.2022.01.222
  27. Prieto, J., Ajnannadhif, R.M., Olmo, P.F., and Coronas, A., 2023, "Integration of a heating and cooling system driven by solar thermal energy and biomass for a greenhouse in mediterranean climates", Appl. Therm. Eng., 221, 119928.
  28. Oa, S.W., 2022, "Evaluation of CO2 concentration of combustion gas in livestock excreta solid fuel", Woosong University Report.
  29. Kyuwontech, "THANQ Biomass boiler", http://kyuwontech.co.kr.
  30. Rosendahl, L., 2013, "Biomass combustion science, technology and engineering", A volume in Woodhead Publishing Series in Energy, Woodhead Publishing, UK.
  31. Sotudeh-Gharebaagh, R., Legros, R., Chaouki, J., and Paris, J., 1998, "Simulation of circulating fluidized bed reactors using ASPEN PLUS", Fuel, 77(4), 327-337. https://doi.org/10.1016/S0016-2361(97)00211-1
  32. Ma, W., Ma, C., Liu, X., Gu, T., Thengane, S.K., Bourtsalas, A., and Chen, G., 2021, "NOx formation in fixed-bed biomass combustion: Chemistry and modeling", Fuel, 290, 119694.
  33. Zuccato energia, "ZE-40-ULH", http://zuccatoenergia.it.
  34. Im, S., Kim, H.G., and Yu, S., 2015, "Feasibility of a solar thermal organic rankine cycle power plant for an apartment complex with aspen plus(R)", Transactions of the Korean Society of Mechanical Engineers - B, 39(4), 317-324. https://doi.org/10.3795/KSME-B.2015.39.4.317
  35. Rohmah, N., Pikra, G., and Salim, A., 2013, "Organic rankine cycle system preliminary design with corn cob biomass waste burning as heat source", Energy Procedia, 32, 200-208. https://doi.org/10.1016/j.egypro.2013.05.026
  36. Khennich, M., and Galanis, N., 2012, "Optimal design of ORC systems with a low-temperature heat source", Entropy, 14(2), 370-389. https://doi.org/10.3390/e14020370
  37. Shin, D., and Kang, S., 2018, "Numerical analysis of an ion transport membrane system for oxy-fuel combustion", Applied Energy, 230, 875-888. https://doi.org/10.1016/j.apenergy.2018.09.016
  38. Esquivel-Patino, G.G., Serna-Gonazalez, M., and Napoles-Rivera, F., 2017, "Thermal integration of natural gas combined cycle power plants with CO2 capture systems and organic Rankine cycles", Energy Convers. Manag., 151, 334-342. https://doi.org/10.1016/j.enconman.2017.09.003
  39. Ji, D., Cai, H., Ye, Z., Luo, D., Wu, G., and Romagnnoli, A., 2023, "Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: A Techno-economic analysis", Sustain. Energy Technol. Assess., 55, 102914.