DOI QR코드

DOI QR Code

Effects of Working Fluids on the Performance Characteristics of Organic Rankine Cycle (ORC) Using LNG Cold Energy as Heat Sink

LNG 냉열을 열싱크로 이용하는 유기랭킨사이클(ORC)의 작동유체에 따른 성능 특성

  • Kim, Kyoung Hoon (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Ha, Jong Man (R&D Division, Korea Gas Corporation) ;
  • Kim, Kyung Chun (School of Mechanical Engineering, Pusan National University)
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 하종만 (한국가스공사 신에너지기술연구센터) ;
  • 김경천 (부산대학교 기계공학부)
  • Received : 2014.03.17
  • Accepted : 2014.04.30
  • Published : 2014.04.30

Abstract

This paper presents thermodynamic performance analysis of organic Rankine cycle (ORC) using low temperature heat source in the form of sensible energy and using liquefied natural gas (LNG) as heat sink to recover the cryogenic energy of LNG. LNG is able to condense the working fluid at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the mathematical model, a parametric analysis is conducted to examine the effects of eight different working fluids, the turbine inlet pressure and the condensation temperature on the system performance. The results indicate that the thermodynamic performance of ORC such as net work production or thermal efficiency can be significantly improved by the LNG cold energy.

Keywords

References

  1. V. A. Prisyazhniuk, "Alternative trends in development of thermal power plant", Applied Thermal Engineering, Vol. 28, 2008, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  2. K. H. Kim, C. H. Han, K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, No. 20, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  3. K. H. Kim, H. J. Ko, K. Kim, "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles", Applied Energy, Vol. 113, 2014, pp. 970-981. https://doi.org/10.1016/j.apenergy.2013.08.055
  4. T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Vol. 35, 2010, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  5. N. A. Lai, M. Wendland, J. Fisher J, "Working fluids for high temperature organic Rankine cycle," Energy, Vol. 36, 2011, pp. 199-211. https://doi.org/10.1016/j.energy.2010.10.051
  6. Y. Dai, J. Wang, L. Gao, "Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery," Energy Convs. Mgmt., Vol. 50, 2009, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
  7. A. Delgadotorres, L. Garciarodriguez, "Double cascade organic Rankine cycle for solar-driven reverse osmosis desalination", Desalination, Vol. 216, 2007, pp. 306-313. https://doi.org/10.1016/j.desal.2006.12.017
  8. B. F. Tchanche, G. Papadakis, A. Frangoudakis, "Fluid selection for a low-temperature solar organic Rankine cycle", App. Therm. Eng., Vol. 29, 2009, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  9. K. H. Kim, C. H. Han, "Analysis of transcritical organic Rankine cycles for low-grade heat conversion," Adv. Sci. Lett., Vol. 8, 2012, pp. 216-221. https://doi.org/10.1166/asl.2012.2404
  10. S. Kumar, H. T. Kwon, K. H. Choi, W. S. Lim, J. H. Cho, K. J. Tak, I. Moon, "LNG: An ecofriendly cryogenic fuel for sustainable development," Applied Energy, Vol. 88, 2011, pp. 4264-4273. https://doi.org/10.1016/j.apenergy.2011.06.035
  11. T. Miyazaki, Y. T. Kang, A. Akisawa, T. Kashiwagi, "A combined power cycle using refuse incineration and LNG cold energy", Energy, Vol. 25, 2000, pp. 639-655. https://doi.org/10.1016/S0360-5442(00)00002-5
  12. K. I. Choi, H. M. Chang, "Thermodynamic analysis of power generation cycle utilizing LNG cold energy", Superconductivity and Cryogenics, Vol. 1, No. 1, 1999, pp. 48-55.
  13. G. Bisio, L. Tagliafico, "On the recovery of LNG physical exergy by means of a simple cycle or a complex system", Exergy, Vol. 2, 2002, pp. 34-50. https://doi.org/10.1016/S1164-0235(01)00037-1
  14. Q. Wang, Y. Z. Li, J. Wang, "Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source", Applied Thermal Engineering, Vol. 24, 2004, pp. 539-548. https://doi.org/10.1016/j.applthermaleng.2003.09.010
  15. G. S. Lee, "Design and exergy analysis for a combined cycle using LNG cold/hot energy", Korean Journal of Air-conditioning and Refrige-ration engineering, Vol. 17, No. 4, 2005, pp. 285-296.
  16. X. Shi, X. Che, "A combined power cycle utilizing low-temperature waste heat and LNG cold energy", Energy, Vol. 50, 2009, pp. 567-575.
  17. J. Wang, Z. Yan, M. Wang, "Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink", Energy Vol. 50, 2013, pp. 13-522.
  18. T. Yang, G. J. Chen, T. M. Guo, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region", Chem. Eng. J, Vol. 67, 1997, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0