DOI QR코드

DOI QR Code

Study of Working Fluids on Thermodynamic Performance of Organic Rankine Cycle (ORC)

작동유체에 따른 유기랭킨사이클(ORC)의 열역학적 성능에 관한 연구

  • Kim, Kyoung-Hoon (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학과)
  • Received : 2011.03.18
  • Accepted : 2011.04.22
  • Published : 2011.04.30

Abstract

The thermal efficiency of energy-to-power conversion becomes uneconomically low when the temperature of heat source drops below $370^{\circ}C$. ORC (Organic Rankine Cycle) has attracted much attention in last few years due to its potential in reducing consumption of fossil fuels and relaxing environmental problems, and its favorable characteristics to exploit low-temperature heat sources. In this work thermodynamic performance of ORC using nine working fluids is comparatively assessed. Special attention is paid to the effect of system parameters such as turbine inlet temperature and pressure on the characteristics of the system such as volumetric flow rate and quality at turbine exit, latent heat, net work as well as thermal efficiency. Results show that in selection of working fluid it is required to consider various criteria of performance characteristics as well as the thermal efficiency. Results also show that the system efficiencies become same irrespective of kind of working fluid when the temperature of heat source decreases to low range.

Keywords

References

  1. 최영찬, 박태준, 홍재창, 조선영, "가정.상업부문 이용을 위한 산업체 폐열특성 연구", 한국에너지공학회지, Vol. 8, 1999, pp. 242-247.
  2. Lolos P.A., Rogdakis E.D., "A Kalina power cycle driven by renewable energy sources", Energy, Vol. 34, 2009, pp. 457-464. https://doi.org/10.1016/j.energy.2008.12.011
  3. Roy P., Desilets M., Galanis N., Nesreddine H., Cayer E., "Thermodynamic analysis of a power cycle using a low-temperature source and a binary $NH_{3}-H_{2}O$ mixture as working fluid", Int. J. Thermal Sci., Vol. 49, 2010, pp. 48-58. https://doi.org/10.1016/j.ijthermalsci.2009.05.014
  4. 김경훈, 김세웅, 고형종, "저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨 사이클에 관한 연구", 한국수소및신에너지 논문집, Vol. 21, No. 6, 2010, pp. 570-579.
  5. 김경훈, "암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구", 설비공학논문집, Vol. 23, No. 3, 2011, pp. 224-231. https://doi.org/10.6110/KJACR.2011.23.3.223
  6. 김경훈, 고형종, 김세웅, "저온 열원 활용을 위한 암모니아-물 혼합물을 작동유체로 하는 칼리나 사이클의 성능 해석", 한국수소및신에너지논문집, Vol. 22, No. 1, 2011, pp. 109-117.
  7. Hung T.C., Shai T.Y., Wang S.K., "A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat", Energy, Vol. 22, 1997, pp. 661-667. https://doi.org/10.1016/S0360-5442(96)00165-X
  8. Larjola J., "Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC)", Int. J. Production Economics, Vol. 41, 1995, pp. 227-235. https://doi.org/10.1016/0925-5273(94)00098-0
  9. Drescher U., Brueggemann D., "Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants", Applied Thermal Eng., Vol. 27, 2007, pp. 223-228. https://doi.org/10.1016/j.applthermaleng.2006.04.024
  10. Hettiarachichi H.D.M., Golubovic M., Worek W.M., "Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources", Energy, Vol. 32, 2007, pp. 1698-1706. https://doi.org/10.1016/j.energy.2007.01.005
  11. Chacartegui R., Sanchez D., Munoz J.M., Sanchez T., "Alternative ORC bottoming cycles for combined cycle for power plants", Applied Energy, Vol. 86, 2009, pp. 2162-2170. https://doi.org/10.1016/j.apenergy.2009.02.016
  12. N.J.Kim, Ng K.C., Chun W., "Using the condenser effluent from a nuclear power plant for ocean thermal energy conversion", Int. Comm. Heat Mass Transfer, Vol. 36, 2009, pp. 1008-1013. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.001
  13. Dai Y., Wang J., Gao L., "Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery", Energy Convs. Mgmt., Vol. 50, 2009, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
  14. Hung T.C., Wang S.K., Kuo C.H., Pei B.S., Tsai K.F., "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources", Energy, Vol. 35, 2010, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  15. Delgado-Torres A.M., Garcia-Rodriguez, "Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)", Energy Convs. Mgmt, Vol. 51, 2010, pp. 2846-2856. https://doi.org/10.1016/j.enconman.2010.06.022
  16. Heberle F., Brueggemann D., "Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation", Applied Thermal Eng., Vol. 30, 2010, pp. 1326-1332. https://doi.org/10.1016/j.applthermaleng.2010.02.012
  17. Jing L., Gang P., Jie J., "Optimization of low temperature solar thermal electric generation with organic Rankine cycle in different areas", Applied Energy, Vol. 87, 2010, pp. 3355- 3365. https://doi.org/10.1016/j.apenergy.2010.05.013
  18. Lai N.A., Wendland M., Fisher J., "Working fluids for high temperature organic Rankine cycle", Energy, Vol. 36, 2011, pp. 199-211. https://doi.org/10.1016/j.energy.2010.10.051
  19. Tchanche B.F., Papadakis G., Frangoudakis A., "Fluid selection for a low-temperature solar organic Rankine cycle", Applied Thermal Eng., Vol. 29, 2009, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  20. Yang T., Chen G.J., Guo T.M., "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region", Chem. Eng. J, Vol. 67, 1997, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  21. Gao J., Li L.D., Zhu Z.Y., Ru S.G., "Vaporliquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule", Fluid Phase Equilibria, Vol. 224, 2004, pp. 213- 219. https://doi.org/10.1016/j.fluid.2004.05.007
  22. Yaws C.L., "Chemical properties handbook", McGraw-Hill, 1999.

Cited by

  1. LNG 냉열과 재생 유기 랭킨 사이클을 이용한 복합 사이클의 성능 특성 해석 vol.31, pp.2, 2011, https://doi.org/10.7316/khnes.2020.31.2.234