DOI QR코드

DOI QR Code

Performance Analysis of Direct Expansion and Organic Rankine Cycle for a LNG Cold Power Generation System

LNG냉열발전시스템에 있어서 직접팽창 및 유기랭킨사이클의 운전성능평가

  • Cho, Eun-Bi (School of Applied Chemical Engineering, Chonnam Nat'l Univ.) ;
  • Jeong, Moon (Korea Institute of Construction Technology) ;
  • Hwang, In-Ju (Korea Institute of Construction Technology) ;
  • Kang, Choon-Hyoung (School of Applied Chemical Engineering, Chonnam Nat'l Univ.)
  • 조은비 (전남대학교 응용화학공학부) ;
  • 정문 (한국건설기술연구원) ;
  • 황인주 (한국건설기술연구원) ;
  • 강춘형 (전남대학교 응용화학공학부)
  • Received : 2014.10.16
  • Accepted : 2015.01.20
  • Published : 2015.03.01

Abstract

The liquefaction to produce LNG (liquefied natural gas) is the only practical way for mass transportation of natural gas across oceans, which accompanies considerable energy consumption in LNG plants. Power generation is one of the effective utilization ways of LNG cold energy which evolves during the vaporization process of LNG with sea water. In this work, performance analysis of two cold energy generation processes, direct expansion and organic Rankine cycles, were carried out by using Aspen HYSYS simulation. The results show that the performance of the organic Rankine cycle is superior to the direct expansion.

국내에서는 천연가스 공급국가와 수입국가의 거리, 공급시설 투자, 국가 간 협력 등 여러 가지 제약에 따라 액화천연가스를 수입하고 있다. 수입한 액화천연가스를 수요처로 공급하기 위해 해수를 이용한 기화과정에서 냉열이 낭비되고 있다. 본 연구에서는 이러한 냉열을 효율적으로 활용하는 냉열발전시스템에서 직접팽창과 유기랭킨사이클 방식의 운전성능을 비교 연구하였다. 시뮬레이션은 Aspen HYSYS를 이용하여 수행하였으며, 운전성능 분석은 T-S 선도 및 시스템 성능 해석을 토대로 비교분석하였다. 시뮬레이션 결과로부터 발전시스템의 운전 측면에서는 유기랭킨사이클 방식이 유리한 것을 확인하였다.

Keywords

References

  1. U.S. EIA, 2013, Annual Energy Outlook 2013 with Projections to 2040, http://www.eia.gov/forecasts/aeo/pdf/0383(2013).pdf
  2. U.S. EIA, 2013, South Korea, http://www.eia.gov/countries/analysisbriefs/South_Korea/south_korea.pdf
  3. Morisaki, T. and Ikegami, Y., 2014, "Maximum Power of a Multistage Rankine Cycle in Low Grade Thermal Energy Conversion," Applied Thermal Engineering, Vol. 69, pp. 78-85. https://doi.org/10.1016/j.applthermaleng.2014.04.004
  4. Qiang, W., Li Y. and Jiang, W., 2004, "Analysis of Power Cycle Based on Cold Energy of Liquefied Natural Gas and Low-Grade Heat Source," Applied Thermal Engineering, 24, pp. 539-548. https://doi.org/10.1016/j.applthermaleng.2003.09.010
  5. Yun, E. K., Kim, H. D., Yoon, S. Y. and Kim, K. C., 2013, "Development of Small-Scale Organic Rankine Cycle System and Study on its Operating Characteristics," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No, 10, pp. 919-926. https://doi.org/10.3795/KSME-B.2013.37.10.919
  6. Gao, H. Liu, C., He, Chao, Xu, X. Wo, S. and Li, Y., 2012, "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, 5, pp. 3233-3247. https://doi.org/10.3390/en5093233
  7. Sun, H. Zhu, H., Liu, and Ding, H., 2014, "Simulation and Optimization of a Novel Rankine Power Cycle for Recovering Cold Energy from Liquefied Natural Gas Using a Mixed Working Fluid," Energy, 70, pp. 317-324. https://doi.org/10.1016/j.energy.2014.03.128
  8. Zhang, L. and Tnag, Q., 2012, "Comparison of Different Power Generation Processes by LNG Cold Energy, AASRI Procedia, 2, pp. 31-38. https://doi.org/10.1016/j.aasri.2012.09.010
  9. Choi, I. H., Lee, S., Seo, Y. and Chang, D., 2013, "Analysis and Optimization of Cascade Rankine Cycle for Liquefied Natural Gas Cold Energy Recovery," Energy, 61, pp. 179-195. https://doi.org/10.1016/j.energy.2013.08.047
  10. Gomez, M. R., Garcia, R. F. and Gomez, J. R., 2014, "Thermodynamic Analysis of a Braton Cycle and Rankine Cycle Arranged in Series Exploiting the Cold Exergy of LNG (Liquefied Natural Gas), Energy, 66, pp. 927-937. https://doi.org/10.1016/j.energy.2013.12.036
  11. Wang, J., Yan, Z., Wang, M. and Dai, Y., 2013 "Thermodynamic Analysis and Optimization of an Ammonia-Water Power System with LNG (Liquefied Natural Gas) as Its Heat Sink," Energy, 50, pp. 513-522. https://doi.org/10.1016/j.energy.2012.11.034
  12. Kim, K. H., Ha, J. M. and Kim, K. C., 2014, " Thermodynamic Performance Characteristics of Organic Rankine Cycle (ORC) Using LNG Cold Energy," KIGAS, Vol. 18, No. 2, pp. 41-47.
  13. Streit, J. and Razani, A., 2013, "Thermodynamic Optimization of Reverse Brayton Cycles of Different Configurations for Cryogenic Applications," International Journal Of Refrigeration, 36, pp. 1529-1544. https://doi.org/10.1016/j.ijrefrig.2013.03.005
  14. Wang, H., Shi, X. and Che, D., 2013, "Thermodynamic Optimization of the Operating Parameters for a Combined Power Cycle Utilizing Low-Temperature Waste Heat and LNG Cold Energy," Applied Thermal Engineering, 59, 490-497. https://doi.org/10.1016/j.applthermaleng.2013.05.048
  15. Xu, X., Liu, J. Cao, L. and Pang, W., 2014, "Automatically Varying the Composition of a Mixed Refrigerant Solution for Single Mixed Refrigerant LNG (Liquefied Natural Gas) Process at Changing Working Conditions," Energy, 64, pp. 931-941. https://doi.org/10.1016/j.energy.2013.10.040
  16. Yeo, G. C., 2010, "Plant Modeling, Applications of an Engineering Model Under an Operating Environment," NICE, Vol. 28, No. 1, pp. 32-36.
  17. Nasri, Z. and Binous, H., 2009, "Applications of the Peng-Robinson Equation of State Using Matlab," Chemical Engineering Education, Vol. 43, No. 2, pp.1-10.

Cited by

  1. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation vol.20, pp.1, 2018, https://doi.org/10.3390/e20010059