• 제목/요약/키워드: Organic Photovoltaic Cell

검색결과 108건 처리시간 0.028초

공압과 정전기력을 이용한 스프레이 박막 코팅 기술 개발 (Development of Spray Thin Film Coating Method using an Air Pressure and Electrostatic Force)

  • 김정수;김동수
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.567-572
    • /
    • 2013
  • In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

Development of High-Efficient Organic Solar Cell With $TiO_2$/NiO Hole-Collecting Layers Using Atomic Layer Deposition

  • Seo, Hyun Ook;Kim, Kwang-Dae;Park, Sun-Young;Lim, Dong Chan;Cho, Shinuk;Kim, Young Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.157-158
    • /
    • 2013
  • Organic solar cell was fabricated using one-pot deposition of a mixture of NiO nanoparticles, P3HT and PCBM. In the presence of NiO, the photovoltaic performance was slightly increased comparing to that of the device without NiO. When $TiO_2$ thin films with a thickness of 2~3 nm was prepared on NiO nanoparticles using atomic layer deposition, the power conversion efficiency was increased by a factor 2.5 with respect to that with bare NiO. Moreover, breakdown voltage of the film consisting of NiO, P3HT, and PCBM on indium tin oxide was increased by more than 1 V in the presence of $TiO_2$-shell on NiO nanoparticles. It is evidenced that S atoms of P3HT can be oxidized on NiO surfaces, and $TiO_2$-shell on NiO nanoparticles. It is evidenced that S atoms of P3HT can be oxidzed on NiO surfaces, and $TiO_2$ shell heavily reduced oxidation of S at oxide/P3HT interfaces. Oxidized S atoms can most likely act as carrier generation sites and recombination centers within the depletion region, decreasing breakdown voltage and performance of organic solar cells. Our result shows that fabrication of various core-shell nanostruecutres of oxides by atomic layer deposition with controlled film thickness can be of potential importance for fabricating highly efficient organic solar cells.

  • PDF

Power Enhance Effect on the Hybrid Cell Based on Direct Current Nanogenerator and an Organic Photovoltaic Device

  • 윤규철;신경식;이근영;이주혁;김상우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.298-298
    • /
    • 2013
  • Finding renewable and clean energy resources is essential research to solve global warming and depletion of fossil fuels in modern society. Recently, complex harvesting of energy from multiple sources is available in our living environments using a single device has become highly desirable, representing a new trend in energy technologies. We report that when simultaneously driving the fusion and composite cells of two or more types, it is possible to make an affect the other cells to obtain a greater synergistic effect. To understand the coupling effect of photovoltaic and piezoelectric device, we fabricate the serially integrated hybrid cell (s-HC) based on organic solar cell (OSC) and piezoelectric nanogenerator (PNG). The size of increased voltage peaks when OSC and PNG are working on is larger than the case when only PNG is working. This voltage difference is the Voc change of OSC, not the voltage change of PNG and current density difference between these two cases is manifested more clearly. When the OSC and PNG are working in s-HC at the same time, piezoelectric potential (VPNG) is generated in ZnO and theoretical total voltage is sum of voltage of an OSC (VOSC) and VPNG. However, electrons from OSC are influenced by piezoelectric potential in ZnO and current loss of OSC in whole circuit decreases. As a result, VOSC increases temporarily. Current shows the similar behavior. PNG acts a resistance in the whole circuit and current loss occurs when the electrons from OSC pass through the PNG. But piezoelectric potential recover current loss and decrease the resistance of PNG. Our PNG can maintain piezoelectric potential when the strain is held owing to the LDH layer while general PNG cannot maintain piezoelectric potential. During the section that strain is held, voltage enhancement effect is maintained and same effect appeared even turn off the light. Actually at this time, electrons in ZnO nanosheets move to LDH and trapped by the positive charges in this layer. After this strain is held, piezoelectric potential of ZnO nanosheets is disappeared but potential difference which is developed by negative charge dominant LDH layer is remained. This potential acts similar role like piezoelectric potential in ZnO. Electrons from the OSC also are influenced by this potential and the more current flows.

  • PDF

ITO를 대체한 고효율 유기박막 태양전지 (Replacement of ITO for efficient organic polymer solar cells)

  • 김재령;박진욱;이보현;이표;이종철;문상진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.69.1-69.1
    • /
    • 2010
  • We have fabricated organic photovoltaic cells (OPVs) with highly conductive poly 3,4-ethylenedioxythiophene : poly styrenesulfonate (PEDOT:PSS) layer as an anode without using transparent conducting oxide (TCO), which has been modified by adding some organic solvents like sorbitol (So), dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone (NMP), dimethylformamide (DMF), and ethylene glycol (EG). The conductivity of PEDOT:PSS film modified with each additive was enhanced by three orders of magnitude. According to atomic force microscopy (AFM) study, conductivity enhancement might be related to better connections between the conducting PEDOT chains. TCO-free solar cells with modified PEDOT:PSS layer and the active layer composed of poly(3-hexylthiophene) (P3HT) and phenyl [6,6] C61 butyric acid methyl ester (PCBM) exhibited a comparable device performance to indium tin oxide (ITO) based organic solar cells. The power conversion efficiency (PCE) of the organic solar cells incorporating DMSO, So + DMSO and EG modified PEDOT:PSS layer reached 3.51, 3.64 and 3.77%, respectively, under illumination of AM 1.5 (100mW/$cm^2$).

  • PDF

기계화학적 방법에 의한 CuSbS2와 CuSbSe2 나노입자의 합성 (Synthesis of CuSbS2 and CuSbSe2 Nanocrystals by a Mechanochemical Method)

  • 박보인;이승용;이도권
    • Current Photovoltaic Research
    • /
    • 제5권4호
    • /
    • pp.140-144
    • /
    • 2017
  • $CuSbS_2$ (CAS) and $CuSbSe_2$ (CASe) nanocrystals (NCs), which consist of earth-abundant elements, were synthesized by a mechanochemical method. Elemental precursors such as copper, antimony, sulfur, and selenium were used without adding any organic solvents or additives. The NCs were synthesized by milling for a few hours. The sudden phase changes occurred by self-ignition and propagation, as previously observed in other mechanochemical synthetic processes. The XRD, Raman, and TEM analysis were carried out to determine the crystallinity and secondary phase of the as-synthesized CAS and CASe NCs, confirming the phase-pure synthesis of CAS and CASe. Optical properties were investigated by UV-Vis spectroscopy and it was observed that the band gap energies were about 1.1 and 1.5 eV, respectively for CAS and CASe, suggesting the potential for the use as solar cell materials. The NC colloids dispersed in anhydrous ethanol were prepared and coated on Mo substrates by a facile doctor-blade method. The investigation on the solar cell properties of the as-synthesized materials is underway.

Influence of surface morphology and thickness of molecular thin films on the performance of SubPc-$C_{60}$ photovoltaic devices

  • Kim, Jin-Hyun;Gong, Hye-Jin;Yim, Sang-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.336-336
    • /
    • 2011
  • Over the past decades, organic semiconductors have been investigated intensely for their potential in a wide range of optoelectronic device applications since the organic materials have advantages for very light, flexible and low cost device fabrications. In this study, we fabricated small-molecule organic solar cells (OSCs) based on chloro[subphthalocyaninato]boron(III) (SubPc) as an electron donor and $C_{60}$ as an electron acceptor material. Recently SubPc, a cone-shaped molecule with $14{\pi}$-electrons in its aromatic system, has attracted growing attention in small-molecule OSC applications as an electron-donating material for its greater open-circuit voltage (VOC), extinction coefficient and dielectric constant compared to conventional planar metal phthalocyanines. In spite of the power conversion efficiency (PCE) enhancement of small-molecule OSC using SubPc and $C_{60}$, however, the study on the interface between donor-acceptor heterojunction of this system is limited. In this work, SubPc thin films at various thicknesses were deposited by organic molecular beam deposition (OMBD) and the evolution of surface morphology was observed using atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM). We also investigated the influence of film thickness and surface morphology on the PCE of small-molecule OSC devices.

  • PDF

태양전지 변환 효율 향상을 위한 근적외선 파장 변환 필름에 관한 연구 (A Study on the Near Infrared Ray Wavelength Conversion Film for Improving Conversion Efficiency of Solar Cell)

  • 박병규;박계춘;이진
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.699-704
    • /
    • 2017
  • The amount of electric power for photovoltaic power generation depends on the location of the power plant and the direction of solar cell. The solar cell controls the generation of solar power plants. Therefore, the structure of solar cell, manufacturing method, and optic technology were factors contributing to increased solar cell efficiency; however, the technical limit has been reached. Herein, we propose a new method to increase the solar cell efficiency using a wavelength conversion technology that converts ultraviolet and infrared rays, which are not effectively used in solar cells, into effective wavelength of solar cell. We used fluoride $Na(Ca)YF_4$ phosphor for wavelength conversion. Then, a wavelength-conversion fluorescent paste, prepared using an organic-silicon binder, was used to prepare a film that was applied to Si solar cells. It was confirmed that conversion efficiency improved by 5% or more.

Ordered CdS nanorods- organic hybrid solar cells

  • 강윤목;김동환
    • 신재생에너지
    • /
    • 제1권1호
    • /
    • pp.32-36
    • /
    • 2005
  • We studied the optoelectronic properties of hybrid solar cells formed by mixing cadmium sulfide [CdS] nanorods with a conjugated polymer, poly-2-methoxy, 5-[2'-ethy[hexyloxy]-1,4-p-phenylenevinylene[MEH-PPV]. CdS nanorods were grown vertically on Ti substrates by electrochemical deposition through a porous alumina template. Absorption spectrum of the composite layer was the same as the superposition of the absorption spectrum of each individual layer. The photoluminescence signal from MEH-PPV film was reduced as a result of the mixing. The energy conversion efficiency of MEH-PPV improved from $0.0012\%$ to about $0.60\%$ when combined with the vertically aligned CdS nanorods.

  • PDF

Electronic and carrier transport properties of small molecule donors

  • Valencia-Maturana, Ramon;Pao, Chun-Wei
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.75-96
    • /
    • 2017
  • As electron donor/acceptor materials for organic photovoltaic cells, small-molecules donors/acceptor are attracting more and more attention. In this work, we investigated the electronic structures, electrochemical properties, and charge carrier transport properties of four recently-synthesized small-molecule donors/acceptor, namely, DPDCPB (A), DPDCTB (B), DTDCPB (A1), and DTDCTB (B1), by a series of ab initio calculations. The calculations look into the electronic structure of singly oxidized and reduced molecules, the first anodic and cathodic potentials, and the electrochemical gaps. Results of our calculations were in accord with those from experiments. Using Marcus theory, we also computed the reorganization energies of hole/electron hoppings, as well as hole/electron transfer integrals of multiple possible molecular dimer configurations. Our calculations indicated that the electron/hole transport properties are very sensitive to the relative separations/orientations between neighboring molecules. Due to high reorganization energies for electron hopping, the hole mobilities in the molecular crystals are at least an order of magnitude higher than the electron mobilities.

Tetrazine/DPP를 갖는 유기태양전지용 신규 단분자에 관한 연구 (Small Molecules Based on Tetrazine or DPP for OPV Application)

  • 김진아;현지나;이경균;이성구;임은희
    • 응용화학
    • /
    • 제15권2호
    • /
    • pp.105-108
    • /
    • 2011
  • Organic photovoltaic cells (OPVs) have attracted considerable attention due to their low cost, light-weight and flexible characteristics. Small molecules have advantages of well-defined structure and easy synthesis. In this work, new tetrazine, DPP, and furan-based oligomers for organic solar cell were synthesized by Suzuki coupling reaction. The structures were confirmed by NMR and optical and electronic properties were investigated by UV-vis absorption.