• Title/Summary/Keyword: Organic EL

Search Result 329, Processing Time 0.035 seconds

Organic Dispersion Type Back Light EL Display Device as a New Light Source (신광원 유기분산형 백라이트 EL 디스플레이 소자)

  • 임인호;박종주;장관식;정회승;박창엽
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • In this paper, organic dispersion type back light EL(Electroluminescent) devices were manufactured using Ethyl hydroxy ethyl cellulose as organic binder, ZnS:Cu as phosphor powder and $BaTiO_3$ as dielectrics by screen printing method, which are focused on as a new light source. The properties of the fabricated organic dispersion type back light EL devices were showed $1.98[mA/\m^2]$ of current density, 0.075[W] of power consumption, 7.1[nF] of capacitance at $25[^{\circ}C]$, 100[V], 400[Hz], respectively. Also brightness of the fabricated device was revealed $20~110[cd/\m^2]$ at 50~150[V] and the change of color was shoed bluish green of x=0.1711, y=0.3676 which are color coordinate by CIE.

  • PDF

The Luminance Characteristics of Organic ELD Based on Znq2 and TPD (Znq2와 TPD에 기초한 유기 ELD의 발광 특성)

  • Jung Seung-Jun;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • The Bis(8-oxyquinolino) zinc lII (Znq2) were synthesized successfully from zinc chloride $(ZnCl_2)$ as a initial material . The organic electroluminescece devices (ELDs) were fabricated with N-N'-diphenyl-N-N'-bis (3-meth-ylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) which act as a hole transporting layer and the Znq2 act as an EL emitting layer and electron transporting layer. In order to maximize luminance of ELD, TPD/Znq2/Al were deposited onto cleaned indium tin oxide (ITO) by changing thickness of EL emitting layer. The photoluminescence (PL) results show that Znq2 compound emits yellow green from 540nm. electrochemical behavior with V-J and V-L curve of carrier injection was investigated from 6 V. respectively. The maximum luminance were defected about $838 cd/m^2$. From these results, ai synthesized Znq2 material maybe one of the useful material of organic EL display material.

Characteristics of Organic Electroluminescent Device Consisting of PDPMA LB Film as a Polymer Hole Transport Material and Alq$_3$ (고분자 정공 전달체로서 PDPMA LB 필름과 Alq$_3$로 구성되는 유기 발광소자의 특성)

  • 오세용;김형민;이창호;최정우;이희우
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • Organic electroluminescent (EL) device was fabricated with Alq$_3$ as an emitting material and PDPMA ultra thin film prepared by Langmuir-Boldgett technique as a polymer hole transport layer. A stable condensed PDPMA monolayer was obtained using arachidic acid as a surface active material. The thickness and absorbance of PDPMA LB film increased line-arly with the layer numbers. The organic multilayered device consisted of ITO/PDPMA LB film (19 layers)/Alq$_3$/Al emitted green light with brightness of 2500 cd/m$^2$ at a DC 14 V Especially, the drive voltage of EL device having PDPMA LB film of 15 layers exhibited the value as low as 4 V. The effects of thickness control and molecular orientation in the PDPMA LB film on EL performance were discussed.

  • PDF

Organic Electroluminescence Device using Dye doped Emitting (색소 doped 유기EL 소자에 의한 고효율화)

  • 임장순;강성종;노병규;오환술
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.261-264
    • /
    • 2000
  • Organic light emitting diodes(OLEDs) have been expected to find an application as a new type of display since C. W. Tang and VanSlyke first reported on high performance OLEDs. This paper has been stuied a green organic EL device using dye doped emitting layer such as C6(Coumarin 6). In the Alq-based e]ectroluminescence diodes, we applied highly fluorescent molecular(Coumarin 6) and obtained enhancement in the electroluminescence efficiency.

  • PDF

Electro-luminescence Characteristics of Nano-Structural Thin Film (나노구조 박막의 EL 특성)

  • Choi, Yong-Sung;Cho, Jang-Hoon;Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.274-275
    • /
    • 2006
  • A new thin film materials can be built up at the molecular level, and the relationship between these artificial structures and the properties of materials can be explored. In this paper, in order to confirm the application possibility to the molecular electronic device of the organic materials, we have investigated electro-luminescent (EL) characteristics of organic EL device using $Alq_3$, PBD as emitting material. Current and luminance can be seen that express a similar relativity in voltage and could know that luminance is expressing current relativity.

  • PDF

Optical properties of Stibenequinone derivatives in PVK organic electroluminescence (PVK 유기 EL에서 Stibenequinone 유도체의 광학적 특성)

  • Cho, Chong-Rae;You, Jung-Yi;Yang, Jong-Heon;Shin, Sang-Sik;Son, Se-Mo;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1047-1049
    • /
    • 2003
  • Stibenequinone(SQ) derivative which was electronic transportation materials in Poly(N-vinylcarbazole) (PVK)-based on organic EL and an optical characteristic of organic EL which is mentioned previously was investigated. The Photoluminescence highest pick with blending TBSQ with PVK was shifted from 439nm to 517nm. This result indicates that an energy gap of a PVK/TBSQ blended sample is less than an energy gap of PVK. According to the electrochemistry characteristic, the ionization energy(Ip) and the electro affinity(Ea) decreased from 5.79eV to 5.63eV and 2.23eV to 2.63eV, respectively.

  • PDF

A Study on the Electrode formation of an Organic EL Devices using the RF Plasma (RF 플라즈마를 이용한 유기 EL 소자의 전극형성에 관한 연구)

  • 이은학
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.228-235
    • /
    • 2004
  • In this thesis, it is designed efficient electrode formation on the organic luminescent device. ITO electrode is treated with $O_2$plasma. In order to inject hole efficiently, there is proposed the shape of anode that inserted plasma polymerized films as buffer layer between anode and organic layer using thiophene monomer. It is realized efficiently electron injection to aluminum due to introduce the quantum well in cathode. In the case of device inserted the buffer layer by using the plasma poiymerization after $O_2$plasma processing for ITO transparent electrode, since it forms the stable interface and reduce the moving speed of hole, the recombination of hole and electronic ate made in the omitting layer. Compared with the devices without buffer layer, the turn-on voltage was lowered by 1.0(V) doc to the introduction of buffer layer Since the quantum well structure is formed in front of cathode to optimize the tunneling effect, there is improved the power efficiency more than two times.

A Study on the Fabrication and Characteristic Analysis of Multiheterostructure White Organic Light Emitting Device (다층구조 배색 유기발전소자의 제작 및 특성 분석에 관한 연구)

  • 노병규;강명구;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.429-434
    • /
    • 2002
  • In this paper, multiheterostructure white organic light-emitting device was fabricated by vacuum evaporation. The structure of white organic light-emitting device is ITO/CuPc/TPD/DPBi:DPA/$Alq_3/Alq_3$:DCJTB/BCT/$Alq_3$/Ca/Al. Three primary colors are implemented with DPVBi, Alq$_3$and DCJTB. The maximum EL wavelength of the fabricated white organic light-emitting device is 647nm. And the CIE coordinate is (0.33, 0.33) at 13 V. In the fabrication of white organic light-emitting devices with DCJTB, $Alq_3$, DPVBi, the EL spectrum has two peaks at 492nm, 647nm. Two peaks appeared because the blue light is combined with green light. The maximum wavelength of red light is not changed with applied voltage. After voltage applied, for the first time, the electrons met the holes in the red emission layer and emitted red light. And then the electrons moved to the green emission layer, and blue emission layer continuously. Finally, when all of the emission layer activated, the white light is emitted.

Improving electroluminescent efficiency of organic light emitting diodes by co-doping (Co-doping을 이용한 OLED의 발광 효율 향상)

  • Park, Young-Wook;Kim, Young-Min;Choi, Jin-Hwan;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.81-82
    • /
    • 2006
  • Doping is a well-known method for improving electroluminescent (EL) efficiency of organic light emitting diodes. In our study, doping with 2 materials simultaneously, we could achieve improved EL efficiency. The emission layer was tris-(8-hydroxyquinoline)aluminum, and the 2 dopants were N,N'-dimethyl-quinacridone (DMQA) and 10-(2-Benzothiazolyl)-2, 3, 6, 7-tetrahydro-1,1,7,7,-tetramethyl 1-1H, 5H, 11H-[1] benzopyrano [6,7,8-ij]quinolizin-11-one (C-545T). The EL intensity of co-doped device was nearly flat, it shows that co-doping technique could be a effective way to improve the EL efficiency. EL efficiency of Single-doped device based on DMQA and C-S45T were ~6.47Cd/A and ~7.45Cd/A, respectively. Co-doped device showed higher EL efficiency of ~8.30Cd/A.

  • PDF