• Title/Summary/Keyword: Organic Crystal

Search Result 528, Processing Time 0.028 seconds

Intercalation behavior study of ibuprofen/clay organic-inorganic nanocomposites as drug release system (약물 방출 시스템으로서 이부프로펜/클레이 유-무기 나노복합체의 층간삽입 거동 연구)

  • Choi, Bong-Seok;Kim, Dong-Hyun;Kim, Tae-Wan;Jin, Heoyng-Ho;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.240-245
    • /
    • 2011
  • This research focused on the intercalation behavior of recrystallized ibuprofen into clay as a sustained release drug carrier. The intercalation behaviors of ibuprofen were determined by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The basal spacing ($d_{001}$) of clay increased from 1.2 nm to 1.5 nm by ibuprofen molecules. The segmental motion effect of ibuprofen into the clay interlayer spacing also increased the thermal stability of the ibuprofen/clay nanocomposites. The in vitro drug release results of nanocomposites showed that ibuprofen was released from clay steadily.

Synthesis of nickel fine powder in the mixed solvent of water and ethanol and ie oxidation behaviors (물과 에탄올의 혼합용매로부터 니켈 미분말의 합성 및 산화특성)

  • 이상근;최은영;이윤복;김광호;박희찬
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • Nickel fine powders were prepared from nickel chloride aqueous solution containing ethanol as an organic solvent, and their oxidation behaviors were investigated. The reduction reaction by hydrazine from nickel chloride aqueous solution containing ethanol depend on reaction temperature. The reduction reaction time by hydrazine decreased with the increase of reaction temperature. By controlling reaction temperature, the products could be obtained spherical particles in the range of 0.1 $\mu\textrm{m}$~1.0 $\mu\textrm{m}$. Also, As reaction temperature increased from $40^{\circ}C$ to $80^{\circ}C$, the particle size slightly increased and had a broad size distribution owing to the presence of the coarse particles. The mean particle size and specific surface area of nickel powders prepared at $60^{\circ}C$ were 0.3 $\mu\textrm{m}$ and 31.8 $\m^2$/g, respectively. Weight loss of the powders at $300^{\circ}C$ was due to composition of $_Ni(OH)2$. In case of heat treatment at $200^{\circ}C$ in air, oxidation resistance of nickel powders was remarkable than that of as-synthesized.

Effects of substitution with La and V in $Bi_4Ti_3O_{12}$ thin film by MOCVD using ultrasonic spraying (초음파분무 MOCVD법에 의한 $Bi_4Ti_3O_{12}$ 박막의 제조와 La과 V의 Co-Substitution 에 의한 효과)

  • 김기현;곽병오;이승엽;이진홍;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.272-278
    • /
    • 2003
  • $Bi_4Ti_3O_{12}$ (BIT) and $(Bi_{3.25}La_{0.75})(Ti_{2.97}V_{0.03})O_{12}$ (BLTV) thin films were deposited on ITO/glass substrates by metal organic chemical vapor deposition (MOCVD) using ultrasonic spraying. After deposition of the films in oxygen atmosphere for 30 min, the films were heated by rapid thermal annealing (RTA) method, especially direct insertion, at various temperatures. The films were investigated on phase formation temperature, microstructure and electrical properties. From x-ray diffraction (XRD) patterns, the perovskite phase formation temperature of BLTV thin film was about $600^{\circ}C$ which was lower than that of BIT, $650^{\circ}C$. The leakage current of the BLTV thin film was measured to be $1.52\times 10^{-9}$A/$cm^2$ at an applied voltage of 1 V. The remanent polarization (Pr) and coercive field (Ec) values of the BLTV film deposited at $650^{\circ}C$ were $5.6\muC/cm^2$ and 96.5 kV/cm, respectively.

A study on copper thin film growth by chemical vapor deposition onto silicon substrates (실리콘 기판 위에 화학적 방법으로 증착된 구리 박막의 특성 연구)

  • 조남인;박동일;김창교;김용석
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.318-326
    • /
    • 1996
  • This study is to investigate a chemical vapor deposition technique of copper film which is expected to be more useful as metallizations of microcircuit fabrication. An experimental equipment was designed and set-up for this study, and a Cu-precursor used that is a metal-organic compound, named (hfac)Cu(I)VTMS ; (hevaflouoroacetylacetonate trimethyvinylsilane copper). Base pressure of the experimental system is in $10^{-6}$ Torr, and the chamber pressure and the substrate temperature can be controlled in the system. Before the deposition of copper thin film, tungsten or titanium nitride film was deposited onto the silicon wafer. Helium has been used as carrier gas to control the deposition rate. As a result, deposition rate was measured as $1,800\;{\AA}/min$ at $220^{\circ}C$ which is higher than the results of previous studies, and the average surface roughness was measured as about $200\;{\AA}$. A deposition selectivity was observed between W or TiN and $SiO_{2}$ substrates below $250^{\circ}C$, and optimum results are observed at $180^{\circ}C$ of substrate temperature and 0.8 Torr of chamber pressure.

  • PDF

The synthesis of atomically thin TiOx nanosheets with large size (원자층 두께를 갖는 대면적 TiOx 나노쉬트 합성)

  • Lee, Sang Eun;Won, Jonghan;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.289-294
    • /
    • 2017
  • Films fabricated using atomic layer 2-dimensional nanosheets exhibit various physical properties depending on the size of the nanosheet. This is because the physical properties of the film depend on the interfacial properties between the sheets. Therefore, the synthesis of large-sized nanosheets is very important because it can reduce the dependency of the film on the interfacial properties. In this study, we succeeded in fabricating $TiO_x$ nanosheets with atomic layer thickness over micrometer size by using single-crystallized starting material and its chemical exfoliation. In addition, it was revealed that the mechanical agitation speed (the stirring speed of a magnetic bar) during the exfoliation step using the organic material is closely related to the nanosheet size and the colloidal concentration of the nanosheets.

Preparation and application of silica-based coatings for corrosion protection of marine structures (해양구조물용 silica 기반 내해수성 코팅제의 제조 및 응용)

  • Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In this study, the development of the room temperature curable silica-based coating compositions for anticorrosive and antifouling performance in marine environments was carried out. The marine (plant) structures with many exposed parts are operated in harsh marine environments such as strong ultraviolet rays, extreme temperature differences and salt water corrosion. Organic paints that are easily degraded under these environments and easily eroded by physical stimuli such as waves can not play a role properly. Dense ceramic coatings on marine structures provide careful protections even in saltwater environments due to their high hardness and rust resistance. Therefore, in the case of ceramic coatings, their use and application range in marine structures can be greatly improved due to their functional advantages. In the present study, silica-based coating compositions based on colloidal silica with silane coupling agents, curing salts, and ceramic fillers were developed, and their applications as protective coatings for corrosion protection and fouling prevention in seawater were also studied.

Preparation of solvent-based eco-friendly stone paper (용제기반 친환경 stone paper의 제조)

  • Seok Ju Jeong;Do Yoon Kam;Eun Ok Choi;Hyun Cho;Byeong Woo Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.4
    • /
    • pp.139-144
    • /
    • 2023
  • Stone papers made of inorganic filler and plastic polymer do not use pulp, which is the main raw material of existing papers, so they contribute to the preservation of nature and can be used as more eco-friendly materials when they have biodegradability. Since most stone papers are manufactured by hot extrusion, the amount of ceramic fillers and related physical properties are limited to control manufacturing workability. In this study, the stone paper composition was prepared in a liquid form using solvents, so that there was little limitation on the amount of ceramic filler added and it was also easy to add additives to control biodegradability. They were fabricated from eco-friendly raw materials using waste oyster shells as an inorganic filler and (recyclable) PVC materials as an organic binder. After making a solution using common solvents for PVC, inorganic filler and cellulose to impart biodegradability were mixed and processed into sheets to prepare solvent-based stone papers, and their paper properties were evaluated.

Characteristics of an electrochromic ECD (electro-chromic device) film in applications for smart windows with a 4-layer structure, a thickness of 0.5 mm (0.5 mm 이내의 두께를 갖는 4층 구조의 스마트 윈도우에 적용되는 전기변색 ECD(electro-chromic device) 필름 제조 및 특성)

  • Nam Il Kim;Geug Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • Using electrochromic devices (ECD), smart window films that can change the colors from tinted state into transparent state by applying an external voltage were manufactured. Polyethylene terephthalate (PET) film was used as a substrate instead of conventional glass, and ECD modules having a total thickness of about 50 ㎛ were manufactured by sequentially introducing an ITO/Ag/ITO electrode layer, a WO3/TIC2 organic discoloration layer, and a Nafion fluorine electrolyte layer. Through a series of sputtering, bar coating, and thermal compression processes, a large scale smart window with a horizontal and vertical length of more than 80 mm was manufactured. When DC 3.5 V was applied, the transmittance decreased from 54 % to 24 % and moreover the color change could be confirmed even with the naked eye. Reversible color change capability at low external voltage implies that external sunlight can be selectively blocked which is effective in terms of energy saving.

The Magnetic Properties and Quantum Effects of Molecular Nanomagnets (분자 자성체의 자기 특성과 양자역학적 효과)

  • Jang, Zee-Hoon
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • Magnetism of molecular nanomagnet, which attracted a lot of academic attention after the discovery of the macroscopic quantum tunneling of magnetism, is reviewed. Molecular nanomagnet is metal-organic material in which magnetic ions are regularly located in the organic skeleton. Also, the interaction between the molecules is very small and those molecules form macroscopic molecular crystal in which molecules are residing at the element points in the crystal. Molecular nanomagnets show a lot of interesting features, especially, equivalence of macroscopic magnetic properties and molecular magnetic properties. In this paper, research results on molecular nanomagnet with microscopic tool like NMR are reviewed mainly. The new method to observe the quantum tunneling of magnetization discovered in Mnl2-ac with NMR is shown and the research results on the microscopic aspects of the macroscopic quantum tunneling of magnetization using the new method are shown. Also, the physical aspect of the level crossing effect which has been reported originally with NMR in molecular nanomagnet is reviewed with experiment results. The research results on the molecular nanomagnets will reveal the important information about the limit of the miniaturization of magnetic memory units and give us the basic scientific knowledge which is needed for the application for the quantum computation. Moreover, academically, many quantum mechanical theories which have not been checked the validity can be checked with experiments.

2-Hexylthieno[3,2-b]thiophene-substituted Anthracene Derivatives for Organic Field Effect Transistors and Photovoltaic Cells

  • Jo, So-Young;Hur, Jung-A;Kim, Kyung-Hwan;Lee, Tae-Wan;Shin, Ji-Cheol;Hwang, Kyung-Seok;Chin, Byung-Doo;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3061-3070
    • /
    • 2012
  • Novel 2-hexylthieno[3,2-b]thiophene-containing conjugated molecules have been synthesized via a reduction reaction using tin chloride in an acidic medium. They exhibited good solubility in common organic solvents and good self-film and crystal-forming properties. The single-crystalline objects were fabricated by a solvent slow diffusion process and then were employed for fabricating field-effect transistors (FETs) along with thinfilm transistors (TFTs). TFTs made of 5 and 6 exhibited carrier mobility as high as 0.10-0.15 $cm^2V^{-1}s^{-1}$. The single-crystal-based FET made of 6 showed 0.70 $cm^2V^{-1}s^{-1}$ which was relatively higher than that of the 5-based FET (${\mu}=0.23cm^2V^{-1}s^{-1}$). In addition, we fabricated organic photovoltaic (OPV) cells with new 2-hexylthieno [3,2-b]thiophene-containing conjugated molecules and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester ($PC_{61}BM$) without thermal annealing. The ternary system for a bulk heterojunction (BHJ) OPV cell was elaborated using $PC_{61}BM$ and two p-type conjugated molecules such as 5 and 7 for modulating the molecular energy levels. As a result, the OPV cell containing 5, 7, and $PC_{61}BM$ had improved results with an open-circuit voltage of 0.90 V, a short-circuit current density of 2.83 $mA/cm^2$, and a fill factor of 0.31, offering an overall power conversion efficiency (PCE) of 0.78%, which was larger than those of the devices made of only molecule 5 (${\eta}$~0.67%) or 7 (${\eta}$~0.46%) with $PC_{61}BM$ under identical weight compositions.