DOI QR코드

DOI QR Code

Intercalation behavior study of ibuprofen/clay organic-inorganic nanocomposites as drug release system

약물 방출 시스템으로서 이부프로펜/클레이 유-무기 나노복합체의 층간삽입 거동 연구

  • Choi, Bong-Seok (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Dong-Hyun (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Tae-Wan (School of Materials Science Engineering, Pusan National University) ;
  • Jin, Heoyng-Ho (School of Materials Science Engineering, Pusan National University) ;
  • Park, Hong-Chae (School of Materials Science Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science Engineering, Pusan National University)
  • Received : 2011.10.28
  • Accepted : 2011.11.18
  • Published : 2011.12.31

Abstract

This research focused on the intercalation behavior of recrystallized ibuprofen into clay as a sustained release drug carrier. The intercalation behaviors of ibuprofen were determined by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The basal spacing ($d_{001}$) of clay increased from 1.2 nm to 1.5 nm by ibuprofen molecules. The segmental motion effect of ibuprofen into the clay interlayer spacing also increased the thermal stability of the ibuprofen/clay nanocomposites. The in vitro drug release results of nanocomposites showed that ibuprofen was released from clay steadily.

본 연구는 지속적 약물방출 전달체로서의 클레이 내의 재결정화 된 이부프로펜 층간삽입 거동에 대해 주안점을 두었다. 이부프로펜의 층간삽입 거동은 X-선 회절 및 열 중량 분석을 통해 확인하였다. 클레이의 기저 공간은 이부프로펜 분자에 의해 1.2 nm에서 1.5 nm까지 증가하였다. 또한 클레이 내부 공간 층에 존재하는 이부프로펜의 부분 운동은 이부프로펜/클레이 나노복합체의 열적 안정성을 증가시켰다. 나노복합체의 in vitro 약물방출 결과는 이부프로펜이 클레이로부터 일정하게 방출됨을 보였다.

Keywords

References

  1. M.M. Wolfe, "Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs", New Engl. J. Med. 340 (1999) 1888. https://doi.org/10.1056/NEJM199906173402407
  2. H. Schott, Rheology, A.R. Gennaro, Editor, Remington's Pharmaceutical Science, (18th edn), Mack, Easton, Pennsylvania (1990).
  3. A.I. Arida, B. Amoro, M. Jaghbir, M. Elalem, R. Sabri and R. Abuzeid, "Development of sustained-release ibuprofen microspheres using solvent evaporation technique", Arch. Pharm. 332 (1999) 405. https://doi.org/10.1002/(SICI)1521-4184(199911)332:11<405::AID-ARDP405>3.0.CO;2-0
  4. M. Adachi, H. Sakamoto, R. Kawamura, W. Wang, K. Lmai and Y. Nomura, "Nonsteroidal anti-inflammatory drugs and oxidative stress in cancer cells", Histol Histopathol 4 (2007) 437.
  5. M.C. Branco and J.P. Schneider, "Self-assembling materials for therapeutic delivery", Acta Biomaterialia 5 (2009) 817. https://doi.org/10.1016/j.actbio.2008.09.018
  6. S. Bourbogot, J.W. Gilman and C.A. Wilkie, "Kinetic analysis of the thermal degradation of polystyrene-montmorillonite nanocomposite", Polym. Degrad. Stab. 84 (2004) 483. https://doi.org/10.1016/j.polymdegradstab.2004.01.006
  7. X. Wang, D. Yumin and J. Luo, "Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity", Nanotechnology 19 (2008) 065707. https://doi.org/10.1088/0957-4484/19/6/065707
  8. D. Depan, A.P. Kumar and R.P. Singh, "Design and evaluation of controlled drug delivery system of buspirone using", Acta Biomater. 5 (2009) 93. https://doi.org/10.1016/j.actbio.2008.08.007
  9. L. Zheng-Rong, Y. Furong and V. Anagha, "Polymer platforms for drug delivery and biomedical imaging", J. Control. Release 122 (2007) 269. https://doi.org/10.1016/j.jconrel.2007.06.016
  10. S.S. Ray and B. Mosto, "Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world", Prog. Mater. Sci. 50 (2005) 962. https://doi.org/10.1016/j.pmatsci.2005.05.002
  11. V. Ambrogi, L. Perioli, M. Ricci, L. Pulcini, M. Nocchetti, S. Giovagnoli and C. Rossi, "Eudragit and hydrotalcite- like anionic clay composite system for diclofenac colonic delivery", Micropor. Mesopor. Mater. 115 (2008) 405. https://doi.org/10.1016/j.micromeso.2008.02.014
  12. L. Bingxin, H. Jing, D.G. Evans and X. Duan, "Entericcoated layered double hydroxides as a controlled release drug delivery system", Int. J. Pharm. 287 (2004) 89. https://doi.org/10.1016/j.ijpharm.2004.08.016
  13. C.D. Nunes, P.D. Vaz, A.C. Fernandes, P. Ferreira, C.C. Roma and M.J. Calhorda, "Loading and delivery of sertraline using inorganic micro and mesoporous materials", Eur. J. Pharm. Biopharm. 66 (2007) 357. https://doi.org/10.1016/j.ejpb.2006.11.023
  14. J.K. Park, Y.B. Choy, J.M. Oh, J.Y. Kim, S.J. Hwang and J.H. Choy, "Controlled release of donepezil intercalated in smectite clays", Int. J. Pharm. 359 (2008) 198. https://doi.org/10.1016/j.ijpharm.2008.04.012
  15. J.M. Oh, T.T. Biswick and J.H. Choy, "Layered nanomaterials for green materials", J. Mater. Chem. 19 (2009) 2553. https://doi.org/10.1039/b819094a
  16. H. Zhang, K. Zou, S. Guo and X. Duan, "Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides", J. Solid State Chem. 179 (2006) 1792. https://doi.org/10.1016/j.jssc.2006.03.019
  17. G.V. Joshi, B.D. Kevadiya, H.A. Patel, H.C. Bajaj and R.V. Jasra, "Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate", Int. J. Pharm. 374 (2009) 53. https://doi.org/10.1016/j.ijpharm.2009.03.004
  18. X. Wang, D. Yumin, J. Luo, B. Lin and J.F. Kennedy, "Chitosan/organic rectorite nanocomposite films: Structure, characteristic and drug delivery behaviour", Carbohyd. Polym. 69 (2007) 41. https://doi.org/10.1016/j.carbpol.2006.08.025
  19. S.R. Levis and P.B. Deasy, "Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride", Int. J. Pharm. 253 (2003) 145. https://doi.org/10.1016/S0378-5173(02)00702-0
  20. A. Valeria, F. Giuseppe, G. Giuliano and P. Luana, "Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents-I Intercalation and in vitro release of ibuprofen", Int. J. Pharm. 220 (2001) 23. https://doi.org/10.1016/S0378-5173(01)00629-9
  21. T. Takahashi and M. Yamaguchi, "Host-guest interaction between swelling clay mineralsand poorly watersoluble drugs. 1: Complex formation between a swelling clay mineral and griseofulvin", J. Incl. Phenom. Macro. 10 (1991) 283. https://doi.org/10.1007/BF01066211
  22. S. Karaboni, B. Smith, W. Heidug, J. Urai and E. van Oort, "The swelling of clays: Molecular simulations of the hydration of montmorillonite", Science 271 (1996) 1102. https://doi.org/10.1126/science.271.5252.1102
  23. E.S. Boek, P.B. Convey and N.T. Skipper, "Monte carlo molecular modeling studies of hydrated Li-, Na-, and Ksmectites: Understanding the role of potassium as a clay swelling inhibitor", J. Am. Chem. Soc. 117 (1995) 12608. https://doi.org/10.1021/ja00155a025
  24. N.T. Skipper, K. Refson and J.D.C. McConnell, "Computer simulation of interlayer water in 2:1 clays", J. Chem. Phys. 94 (1991) 7434. https://doi.org/10.1063/1.460175
  25. C.S. Hutchison, Laboratory Handbook of Petrographic Techniques, McGraw-Hill Book Co, New York (1973).