• 제목/요약/키워드: Organic/inorganic hybrids

검색결과 34건 처리시간 0.03초

Fabrication and characterization of photocurable inorganic-organic hybrid materials using organically modified colloidal-silica nanoparticles and acryl resin

  • Kang, Dong-Jun;Han, Dong-Hee;Kang, Young-Taec;Kang, Dong-Pil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.422-422
    • /
    • 2009
  • Photocurable inorganic-organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the solgel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm, and they were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with aeryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure. The fabricated hybrid films exhibit an excellent optical transmission of above 90% in the visible region as well as an enhanced surface smoothness of around 1 nm RMS roughness. In addition, the hybrid films exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. More importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.

  • PDF

Preparation and Characterization of Hybrid Silica-Poly(ethylene glycol) Sonogel

  • Jung, Hwa-Young;Gupta, Ravindra K.;Seo, Dong-Won;Kim, Yoo-Hang;Whang, Chin-Myung
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권6호
    • /
    • pp.884-890
    • /
    • 2002
  • An inorganic-organic hybrid system, silica-poly(ethylene glycol) songel is reported. This system was prepared via sol-gel method by varying varous processing variables. e.g. ultrasonic radiation time, gelling temperanture, PEG content and its molecular weight. Various experimental techniques wee employed to analyze the morphological, mechanical and optical properties of the system. The results were discussed in the light of existing theories. The sonogel system exhibited the common features of inorganic-organic hybrids. $SiO_2-10$ wt% PEG sonogel exhibited the morphological and optical properties superior to those reported earlier for the classic gels and found suitable for device applications.

Production of Functional Colloids and Fibers from Phase Separation During Electrohydrodynamic Process

  • 정운룡
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.1.2-1.2
    • /
    • 2011
  • Electrohydrodynamics is a good approach to produce uniform-sized colloids and fibers in a continuous process. The dimension can be controlled from tens of nanometers to a few micrometers. The structure of the colloids and nanofibers from electrohydrodynamics has been diversified according to the uses. Especially, core-shell structure and hybridization with functional nanomaterials are fascinating due to their possible uses in drug-delivery systems, multifunctional scaffolds, organic/inorganic hybrids with new functions, and highly sensitive gas- or bio-sensors. This talk will present the structural variations in the colloids and fibers by simply employing phase separation during electrohydrodynamic process and demonstrate their possible applications.

  • PDF

혼성복합재료의 계면 특성 분석 (Characterization of Interface in Hybrid Composites)

  • 하창식;안기열;조원재
    • 접착 및 계면
    • /
    • 제1권1호
    • /
    • pp.47-55
    • /
    • 2000
  • In this article, the characterization of the interface of hybrid composites was discussed. Interfacial interaction in organic/inorganic hybrid composites, especially silica-containing hybrids can be characterized by fluorescence spectroscopy, small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and $^{29}Si$ NMR spectroscopy measurements.

  • PDF

New Plastic Substrate for Flexible Display

  • Hwang, Hee-Nam;Lee, Ki-Ho;Kim, Sung-Tae;Kim, In-Sun;Shim, Jun-O;Kwak, Soon-Jong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.988-990
    • /
    • 2003
  • A plastic substrate for flexible display is developed. The developed PES film has good resistance to heat, low intrinsic birefringence, and mechanical stability. The gas barrier property in the substrate is improved through depositing organic and inorganic multi layer on plastic film by PVD and CVD process.

  • PDF

코아 가교 양친성 고분자 나노입자 템플레이트를 이용한 무기물 나노 구조체 합성 (Use of Core-Crosslinked Amphiphilic Polymer Nanoparticles as Templates for Synthesis of Nanostructured Inorganic Materials)

  • 김현지;김나혜;김주영
    • 접착 및 계면
    • /
    • 제16권1호
    • /
    • pp.6-14
    • /
    • 2015
  • 본 연구에서는 양친성 반응성 고분자 전구체를 합성하고 이를 사용하여 화학적, 물리적으로 안정한 코아 가교 양친성 고분자(Core-crosslinked Amphiphilic Polymer; 이하 CCAP) 나노입자를 제조하였으며, CCAP 나노입자를 $TiO_2$ 나노입자 제조의 템플레이트로 응용하였다. 먼저 CCAP 나노입자 수용액과 티타늄 이소프로폭사이드(Titanium isopropoxide)를 혼합하여, 매우 안정한 유/무기 나노하이브리드 솔(Sol)을 제조하였으며, 제조된 솔(Sol)은 회전코팅(Spin coating) 기법을 통해 유/무기 하이브리드 박막으로 제조하고, 소결 공정을 통해서 템플레이트인 CCAP를 제거하여 제조된 $TiO_2$ 나노입자의 미세구조를 주사전자현미경(SEM)을 이용하여서 관찰하였다. 다양한 CCAP 나노입자를 템플레이트로 사용하여 제조된 $TiO_2$ 나노입자의 미세구조를 기존 유기물 템플레이트(계면활성제)를 사용하여 제조된 $TiO_2$ 나노입자의 미세구조와 비교하여, CCAP 나노입자가 $TiO_2$ 나노입자 구조에 미치는 영향을 조사하였다.

Application of Hybrid Polymeric Complexes to Solid State and Materials Chemistry

  • Josik Portier;Guy Campet;Nadine Treuil;Armel Poquet;Kim, Young Il;Kwon, Soon Jae;Kwak, Seo Young;Choy, Jin Ho
    • 대한화학회지
    • /
    • 제42권4호
    • /
    • pp.487-500
    • /
    • 1998
  • A bird's-eye view on preparation, structure and properties of polymeric complexes in the field of Inorganic-Organic-Hybrids is presented in the view point of solid state and materials chemistry. These materials are useful precursors for preparing nanoparticles and fine grain oxides. Some of them are electroactive and are used as protonic or lithium electrolytes, electrochromic materials or membranes for sensors and actuators. New results on bio-hybrids, a class of material not far from polymeric complexes, are also described.

  • PDF

폴리비닐알코올 $H_6P_2W_{18}O_{62}$ hybrid membranes의 광색 및 열적 특성 (Photochromic and thermal properties of poly (Vinyl alcohol)/ $H_6P_2W_{18}O_{62}$ hybrid membranes)

  • Jian Gong;Kim, Hak-Yong;Lee, Duck-Rae;Bin Ding;Xiangdan Li
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.459-461
    • /
    • 2002
  • A new class of materials based on organic and inorganic species combined at a molecule level has obtained more attention recently[1]. HPA(heteropolyacid) shows unmatched applied perspective in terms of synthesis chemistry, analysis chemistry, biology, medicine and materials science[2]. As a potential photochemical material, the hybrid system of HPA and polymer has been investigated. However, the design and synthesis of heteropolyacid-based hybrids, which are at the forefront of the materials chemistry research, is still in its infancy. (omitted)

  • PDF

POSS/Polyurethane Hybrids and Nanocomposites: A Review on Preparation, Structure and Performance

  • Diao, Shuo;Mao, Lixin;Zhang, Liqun;Wang, Yiqing
    • Elastomers and Composites
    • /
    • 제50권1호
    • /
    • pp.35-48
    • /
    • 2015
  • Polyhedral oligomeric silsesquioxane (POSS) is an important inorganic-organic hybrid material with a three-dimensional structure. Polyurethane (PU) is a widely applied polymer that has versatile properties with the change of two phase structure. When POSS is incorporated into PU by physical or chemical methods, many properties can be greatly improved, such as mechanical properties, thermal stability, biodegradation resistance, and water resistance. This paper reviews the recent progress in preparation, structure, and performance of POSS-modified polyurethane from the viewpoint of physical blending and chemical modification.