• Title/Summary/Keyword: Organ specific genes

Search Result 52, Processing Time 0.026 seconds

Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis

  • Nguyen, Ngoc Quy;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.419-427
    • /
    • 2017
  • Background: Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Methods: Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. Results: PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. Conclusion: PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.

Identification of Species and Sex of Korean Roe Deer (Capreolus pygargus tianschanicus) Using SRY and CYTB Genes

  • Han, Sang-Hyun;Cho, In-Cheol;Lee, Sung-Soo;Tandang, Leoncia;Lee, Hang;Oh, Hong-Shik;Kim, Byoung-Soo;Oh, Moon-You
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.165-168
    • /
    • 2007
  • The nucleotide sequences of a male-specific marker sex determining region Y (SRY) gene and a mitochondrial cytochrome B (CYTB) gene were characterized and analyzed to establish a molecular method for identification of species and sex of Korean roe deer (Capreolus pygargus tianschanicus). Similarity search result of SRY sequences showed very similar result to those reported in Moose (Alces alces) and Reindeer (Rangifer tarandus), both of which had 95.9% similarity in identity. CYTB genes were very similar to those reported in Siberian roe deer (C. pygargus pygargus) which had 98.6% similarity and not to European roe deer (C. capreolus), suggesting that the DNA samples tested were of Siberian roe deer lineage. Polymerase chain reaction (PCR)-based sex typing successfully discriminated between carcasses of male and female roe deer. Males had SRY band on agarose gels and females did not. The result of this molecular sex typing provided similar information with that obtained by genital organ observation. Therefore, this molecular method using male specific marker SRY and mitochondrial CYTB genes would be very useful for identification of the species and sex of the carcass remains of roe deer.

Analysis of Gene Expression in Carcinogen-induced Acute Hepatotoxicity

  • Oh, Jung-Hwa;Park, Han-Jin;Lee, Eun-Hee;Heo, Sun-Hee;Cho, Jae-Woo;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.58-66
    • /
    • 2009
  • The 2-year rodent carcinogenicity test involves long-term, repetitive dosing of animals that is both time consuming and expensive. Alternative approaches have been attempted using specific transgenic or knockout mice or toxicogenomics to predict carcinogenicity without conducting a 2-year rodent test. In addition, toxicogenomic analysis of carcinogen-treated animals could also enhance our understanding of molecular mechanisms and aid in the diagnosis of acute toxicity induced by carcinogens. Therefore, we investigated transcription profiles after administering the carcinogens 4,4-dimethylformamide (DMF) and 4-biphenylamine (ABP). BALB/c male mice were treated once with DMF (650 mg/kg i.p.) or ABP (120 mg/kg p.o.). Standard blood biochemistry and histological changes were observed. Gene expression profiles in the livers of mice treated with either vehicle or the carcinogens were analyzed using the Affymetrix $GeneChip^{(R)}$ assay. In all, 1,474 differentially expressed genes in DMF- or ABP-treated mice were identified as being either up- or down-regulated over 1.5-fold (P< 0.01), and these genes were analyzed using hierarchical clustering and Ingenuity Pathways Analysis. Of these, 107 genes were consistently regulated in both carcinogen-treated groups. Genes associated with cancer were upregulated (Por, S100a10, Tes, Ctcf, Ddx21, Eapp, Nel, and Pa2g4) or downregulated (Cbs and Gch1). Toxicological function analysis also identified genes involved in organ toxicity, including hepatotoxicity. These data may help to identify molecular markers for acute hepatotoxicity induced by carcinogens.

The art of reporter proteins in science: past, present and future applications

  • Ghim, Cheol-Min;Lee, Sung-Kuk;Takayama, Shuichi;Mitchell, Robert J.
    • BMB Reports
    • /
    • v.43 no.7
    • /
    • pp.451-460
    • /
    • 2010
  • Starting with the first publication of lacZ gene fusion in 1980, reporter genes have just entered their fourth decade. Initial studies relied on the simple fusion of a promoter or gene with a particular reporter gene of interest. Such constructs were then used to determine the promoter activity under specific conditions or within a given cell or organ. Although this protocol was, and still is, very effective, current research shows a paradigm shift has occurred in the use of reporter systems. With the advent of innovative cloning and synthetic biology techniques and microfluidic/nanodroplet systems, reporter genes and their proteins are now finding themselves used in increasingly intricate and novel applications. For example, researchers have used fluorescent proteins to study biofilm formation and discovered that microchannels develop within the biofilm. Furthermore, there has recently been a "fusion" of art and science; through the construction of genetic circuits and regulatory systems, researchers are using bacteria to "paint" pictures based upon external stimuli. As such, this review will discuss the past and current trends in reporter gene applications as well as some exciting potential applications and models that are being developed based upon these remarkable proteins.

A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells

  • Chen, Ji;Kim, Seol-min;Kwon, Jae Young
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.358-366
    • /
    • 2016
  • The digestive system is gaining interest as a major regulator of various functions including immune defense, nutrient accumulation, and regulation of feeding behavior, aside from its conventional function as a digestive organ. The Drosophila midgut epithelium is completely renewed every 1-2 weeks due to differentiation of pluripotent intestinal stem cells in the midgut. Intestinal stem cells constantly divide and differentiate into enterocytes that secrete digestive enzymes and absorb nutrients, or enteroendocrine cells that secrete regulatory peptides. Regulatory peptides have important roles in development and metabolism, but study has mainly focused on expression and functions in the nervous system, and not much is known about the roles in endocrine functions of enteroendocrine cells. We systemically examined the expression of 45 regulatory peptide genes in the Drosophila midgut, and verified that at least 10 genes are expressed in the midgut enteroendocrine cells through RT-PCR, in situ hybridization, antisera, and 25 regulatory peptide-GAL transgenes. The Drosophila midgut is highly compartmentalized, and individual peptides in enteroendocrine cells were observed to express in specific regions of the midgut. We also confirmed that some peptides expressed in the same region of the midgut are expressed in mutually exclusive enteroendocrine cells. These results indicate that the midgut enteroendocrine cells are functionally differentiated into different subgroups. Through this study, we have established a basis to study regulatory peptide functions in enteroendocrine cells as well as the complex organization of enteroendocrine cells in the Drosophila midgut.

EST analysis of regenerating newt retina

  • Hisatomi, Osamu;Hasegawa, Akiyuki;Goto, Tatsushi;Yamamoto, Shintaro;Sakami, Sanae;Kobayashi, Yuko;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.267-268
    • /
    • 2002
  • A vertebrate retina is an organ belonging to the central nerve system (CNS), and is usually difficult to regenerate except at an embryonic stage in life. However, certain species of urodele amphibians, such as newts and salamanders, possess the ability to regenerate a functional retina from retinal pigment epithelial (RPE) cells even as adults. After surgical removal of neural retinas from adult newt eyes, the remaining RPE cells lose their pigment granules, transdifferentiate into retinal progenitor cells, which further differentiate into various retinal neurons, and then finally reform a functional neural network. To understand the molecular mechanisms of CNS regeneration, we attempted to investigate the genes expressing in regenerating newt retina. mRNAs were isolated from regenerating retinas at 18-19 days after the surgical removal of the normal retina, and a cDNA library (regenerating retinal cDNA library) were constructed. Our EST analysis of 112 clones in the regenerating cDNA library revealed that about 70% clones are closely related to the genes previously identified. About 40% clones are housekeeping genes, and about 15% clones encode proteins related to the regulation of gene expression and to the proliferation of the cells. Sequences similar to neural retina- and RPE-specific genes were not detected at all. These results led us to suppose that the regenerating retinal cells are in a state considerably different from those of neither neural retina nor RPE cells.

  • PDF

Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops

  • Tweneboah, Solomon;Oh, Sang-Keun
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Evolutionary studies conducted on NAC (NAM, ATAF1&2, and CUC2) genes for all major groups of land plants, indicate the presence of the NAC subfamilies, even in the early land plants. The varied roles played by NAC proteins in plant growth and development range from the formation of shoot apical meristem, floral organ development, reproduction, lateral shoot development, and defense responses to biotic and abiotic stresses. Considering the value and importance of solanaceous crops, the study of NAC proteins in these plants needs to be intensified. This will help to identify and functionally characterize their promoters, which will subsequently aid in engineering plants with improved performance under stressful conditions. In this review, the functionally characterized NAC transcription factors specific to tomato, potato, tobacco, chili pepper and eggplant (aubergine) are summarized, clearly indicating their biological functions in the defense mechanism of the plants, against biotic and abiotic stresses.

Post Genomic Approaches to Nodulation in Soybean

  • Hwang, Cheol-Ho;Lim, Chae-Woo
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • An interaction between Legumes and Rhizobia establishes a symbiotic new organ, the nodule that supports atmospheric nitrogen fIxation. The specific communications between the microbes and legume plants are necessary for both nodulation and nitrogen fixation. Through genetic and biochemical analyses several genes playing pivotal roles in nodulation had been identified to be a receptor kinase like CALVATAl involved signal transduction for development. This emphasizes peptides as signals to be transmitted for a short or long distance transport for nodulation. In addition, a quorum sensing in rhizobia has become a focus as counterpart signal. In an attempt to reveal proteins factors and signaling molecules acting on nodulation, proteome analyses of nodule and the proteins in apoplast upon communication between Legumes and Rhizobia were performed.

Autophagy in the uterine vessel microenvironment: Balancing vasoactive factors

  • Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.263-268
    • /
    • 2020
  • Autophagy, which has the literal meaning of self-eating, is a cellular catabolic process executed by arrays of conserved proteins in eukaryotes. Autophagy is dynamically ongoing at a basal level, presumably in all cells, and often carries out distinct functions depending on the cell type. Therefore, although a set of common genes and proteins is involved in this process, the outcome of autophagic activation or deficit requires scrutiny regarding how it affects cells in a specific pathophysiological context. The uterus is a complex organ that carries out multiple tasks under the influence of cyclic changes of ovarian steroid hormones. Several major populations of cells are present in the uterus, and the interactions among them drive complex physiological tasks. Mouse models with autophagic deficits in the uterus are very limited, but provide an initial glimpse at how autophagy plays a distinct role in different uterine tissues. Herein, we review recent research findings on the role of autophagy in the uterine mesenchyme in mouse models.

Expression analysis of Porcine Endogenous Retroviruses (PERVs) in Korean native pig organs (한국재래돼지의 장기조직에서 PERVs의 발현 특성 분석)

  • Oh, Hyung-Gil;Jung, Woo-Young;Yu, Seung-Lan;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • Pigs have anatomically and physiologically very similar to human and because of this, pigs are the possible xenotransplantation donors for human organs. PERVs (Porcine Endogenous Retroviruses) are known to be one of the possible obstacles for using porcine organs regardless of the immunological barriers. In order to understand the expression patterns of PERVs in Korean native pigs, we investigated PERV expressions in porcine liver, heart, spleen, and lung samples. After RNA extraction, two types of specific PERV envelope genes (ENV-A and ENV-B) were amplified using specific primers by RT-PCR. The results indicated that the variable PERV expressions were observed in inconsistent patterns among animals and tissues. The PERV expressions were verified with semi-quantitative real-time PCR with three replicates. Even though, these results confirm the previous findings that the PERVs were differentially expressed between animals and tissues. These results also give some valuable information for xenotransplantation when using the Korean native pigs as the organ donor.