DOI QR코드

DOI QR Code

Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops

  • Tweneboah, Solomon (Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University) ;
  • Oh, Sang-Keun (Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University)
  • Received : 2017.02.06
  • Accepted : 2017.03.20
  • Published : 2017.03.31

Abstract

Evolutionary studies conducted on NAC (NAM, ATAF1&2, and CUC2) genes for all major groups of land plants, indicate the presence of the NAC subfamilies, even in the early land plants. The varied roles played by NAC proteins in plant growth and development range from the formation of shoot apical meristem, floral organ development, reproduction, lateral shoot development, and defense responses to biotic and abiotic stresses. Considering the value and importance of solanaceous crops, the study of NAC proteins in these plants needs to be intensified. This will help to identify and functionally characterize their promoters, which will subsequently aid in engineering plants with improved performance under stressful conditions. In this review, the functionally characterized NAC transcription factors specific to tomato, potato, tobacco, chili pepper and eggplant (aubergine) are summarized, clearly indicating their biological functions in the defense mechanism of the plants, against biotic and abiotic stresses.

Keywords

References

  1. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841-857 https://doi.org/10.1105/tpc.9.6.841
  2. Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756-767 https://doi.org/10.1038/cr.2008.53
  3. Cenci A, Guignon V, Roux N, Rouard M (2014) Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol 85:63-80 https://doi.org/10.1007/s11103-013-0169-2
  4. Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46:521-529 https://doi.org/10.1023/A:1010639225091
  5. Delessert C, Kazan K, Wilson IW, Straeten DVD, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745-757 https://doi.org/10.1111/j.1365-313X.2005.02488.x
  6. Du M, Zhi Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Li CB, Wei J, Kang L, Li J, Li C (2014) Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell 26:3167-3184 https://doi.org/10.1105/tpc.114.128272
  7. Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology 50:237-248 https://doi.org/10.1023/A:1016028530943
  8. Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547-563 https://doi.org/10.1007/s00438-008-0386-6
  9. Fu Y, Guo H, Cheng Z, Wang R, Li G, Huo G, Liu W (2013) NtNAC-R1, a novel NAC transcription factor gene in tobacco roots, responds to mechanical damage of shoot meristem. Plant Physiol Biochem 69:74-81 https://doi.org/10.1016/j.plaphy.2013.05.004
  10. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39: 863-876 https://doi.org/10.1111/j.1365-313X.2004.02171.x
  11. Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis-2001 status. Curr Opin Plant Biol 4:301-308 https://doi.org/10.1016/S1369-5266(00)00177-1
  12. Griffiths AJF, Wessler SR, Lewontin RC, Gelbart WM, Suzuki DT, Miller JH (2005) An Introduction to Genetic Analysis (8th edition). New York: New York: WH Freeman; Basingstoke: Palgrave. pp 301-339
  13. Guo WL, Wang SB, Chen RG, Chen BH, Du XH, Yin YX, Gong ZH, Zhang YY (2015) Characterization and expression profile of CaNAC2 pepper gene. Front Plant Sci 6:755
  14. Han Q, Zhang J, Li H, Luo Z, Ziaf K, Ouyang B, Wang T, Ye Z (2012) Identification and expression pattern of one stressresponsive NAC gene from Solanum lycopersicum. Mol Biol Rep. 39:1713-1720 https://doi.org/10.1007/s11033-011-0911-2
  15. Han QQ, Qiao P, Song YZ, Zhang JY (2015) Structural analysis and tissue-specific expression patterns of a novel salt-inducible NAC transcription factor gene from Nicotiana tabacum cv. Xanthi. J Hortl Sci Biotechnol 89:700-706
  16. Han QQ, Song YZ, Zhang JY, Liu L F (2014) Studies on the role of the SlNAC3 gene in regulating seed development in tomato (Solanum lycopersicum). J Hortl Sci Biotechnol 89:423-429 https://doi.org/10.1080/14620316.2014.11513101
  17. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903-916 https://doi.org/10.1111/j.1365-313X.2005.02575.x
  18. Hernandez-Garcia CM and Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Science 217-218:109-119 https://doi.org/10.1016/j.plantsci.2013.12.007
  19. Hirota A, Kato T, Fukaki H, Aida M, Tasaka M (2007) The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156-2168 https://doi.org/10.1105/tpc.107.050674
  20. Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biology 10:145 https://doi.org/10.1186/1471-2229-10-145
  21. Jin JP, Zhang H, Kong L, Gao G, Luo JC (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182-D1187 https://doi.org/10.1093/nar/gkt1016
  22. Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che FS (2009) The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death
  23. Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262:1047-1051 https://doi.org/10.1007/PL00008647
  24. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics 46:270-280 https://doi.org/10.1038/ng.2877
  25. Kleinow T, Himbert S, Krenz B, Jeske H, Koncz C (2009) NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis. Plant Science 177:360-370 https://doi.org/10.1016/j.plantsci.2009.06.011
  26. Knapp S (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Botany 53: 2001-2022 https://doi.org/10.1093/jxb/erf068
  27. Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263-276 https://doi.org/10.1093/dnares/dsr015
  28. Li XD, Zhuang KY, Liu ZM, Yang DY, Ma NN, Meng QW (2016) Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco. J Plant Physiol 204:54-65 https://doi.org/10.1016/j.jplph.2016.06.024
  29. Liang XQ, Ma NN, Wang GD, Meng X, Ai XZ, Meng QW (2015) Suppression of SlNAC1 reduces heat resistance in tomato plants. Biol Plant 59:92-98 https://doi.org/10.1007/s10535-014-0477-7
  30. Liu B, Ouyang Z, Zhang Y, Li X, Hong Y, Huang L, Liu S, Zhang H, Li D, Song F (2014) Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. PLoS ONE 9: e102067 https://doi.org/10.1371/journal.pone.0102067
  31. Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289-305
  32. Lv X, Lan S, Guy KM, Yang J, Zhang M, Hu Z (2016) Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus. Scientific Reports 6:30574 https://doi.org/10.1038/srep30574
  33. Ma NN, Zuo YQ, Liang XQ, Yin B, Wang GD, Meng QW (2013) The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiologia Plantarum 149:474-486 https://doi.org/10.1111/ppl.12049
  34. Ma HL, Zhou HL, Zhang HY, Zhao J (2010) Cloning and expression analysis of an AP2/ERF gene and its responses to phytohormones and abiotic stresses in rice. Rice Sci 17:1-9 https://doi.org/10.1016/S1672-6308(08)60098-0
  35. Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351 https://doi.org/10.1186/s12870-014-0351-y
  36. Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262:1047-1051 https://doi.org/10.1007/PL00008647
  37. Meng C, Yang D, Ma X, Zhao W, Liang X, Ma N, Meng Q (2016) Suppression of tomato SlNAC1 transcription factor delays fruit ripening. J Plant Physiol 193:88-96 https://doi.org/10.1016/j.jplph.2016.01.014
  38. Na C, Shuanghua W, Jinglong F, Bihao C, Jianjun L, Changming C, Jin J (2016) Overexpression of the eggplant (Solanum melongena) NAC family transcription factor SmNAC suppresses resistance to bacterial wilt. Scientific Reports 6:31568 https://doi.org/10.1038/srep31568
  39. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. BBA 1819:97-103
  40. Nakashima K, Tran LP, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617-630 https://doi.org/10.1111/j.1365-313X.2007.03168.x
  41. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248
  42. Nuruzzaman M, Sharoni AM, Satoh K, Karim MR, Harikrishna JA, Shimizu T, Sasaya T, Omura T, Haque MA, Hasan SMZ, Ahmad A, Kikuchi S (2015) NAC transcription factor family genes are differentially expressed in rice during infections with Rice dwarf virus, Rice black-streaked dwarf virus, Rice grassy stunt virus, Rice ragged stunt virus, and Rice transitory yellowing virus. Front Plant Sci 6:676
  43. Oh SK, Lee S, Yu SH, Choi D (2005) Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta 222:876-887 https://doi.org/10.1007/s00425-005-0030-1
  44. Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF, Collier SM (2008) A molecular phylogeny of the Solanaceae. Taxon 57:1159-1181
  45. Olsen AN, Erns, HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:1360-1385
  46. Portis E, Barchi L, Toppino L, Lanteri S, Acciarri N, Felicioni N, Fusari F, Barbierato V, Cericola F, Vale G, Rotino GL (2014) QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS ONE 9:e89499 https://doi.org/10.1371/journal.pone.0089499
  47. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012). NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369-381 https://doi.org/10.1016/j.tplants.2012.02.004
  48. Rushton PJ, Bokowiec MT, Han S, Zhang HH, Brannock JF, Chen X, Laudeman TW, Timko MP (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae. Plant Physiol 147:280-295 https://doi.org/10.1104/pp.107.114041
  49. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci. 15:247-258 https://doi.org/10.1016/j.tplants.2010.02.006
  50. Sablowski RW, Meyerowitz EM (1998) A homolog of no apical meristem is an immediate target of the floral homeotic genes APETALA3/ PISTILLATA. Cell 92:93-103 https://doi.org/10.1016/S0092-8674(00)80902-2
  51. Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Shibata D, Ohta D (2012) Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol Plant Microbe Interact 25:684-696 https://doi.org/10.1094/MPMI-09-11-0244
  52. Sarkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214 https://doi.org/10.1186/1471-2148-13-214
  53. Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311-325 https://doi.org/10.1105/tpc.104.027235
  54. Seo PJ, Kim MJ, Park JY, Kim SY, Jeon J, Lee YH, Kim J, Park CM (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J 61:661-671 https://doi.org/10.1111/j.1365-313X.2009.04091.x
  55. Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20:403-423 https://doi.org/10.1093/dnares/dst019
  56. Smekalova V, Doskocilova A, Komis G, Samaj J (2013) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Advances 32:2-11
  57. Song FY, Su HY, Cheng XH, Zhu LY, Wang L (2015) Characterization and expression analysis of TNAC genes of tomato. Bull Bot Res 35:898-903
  58. Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159-170 https://doi.org/10.1016/S0092-8674(00)81093-4
  59. Stern S, de Fatima Agra M, Boh, L (2011) Molecular delimitation of clades within New World species of "spiny solanums" (Solanum subg. Leptostemonum) Taxon 60:1429-1441
  60. Sun L, Zhang H, L, D, Huang L, Hong Y, Ding XS, Nelson RS, Zhou X, Song F (2013) Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea. Plant Mol Biol 81:41-56 https://doi.org/10.1007/s11103-012-9981-3
  61. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739 https://doi.org/10.1093/molbev/msr121
  62. Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley EJ, Schafer E, Nagy F (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA 101:1397-1402 https://doi.org/10.1073/pnas.0308044100
  63. Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q (2016) A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum 158:45-64 https://doi.org/10.1111/ppl.12444
  64. Wang X, Basnayake BM, Zhang H, Li G, Li W, Virk N, Mengiste T, Song F (2009) The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant-Microbe Interact 22:1227-1238 https://doi.org/10.1094/MPMI-22-10-1227
  65. Weese TL, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solanaceae) Syst Bot 32:445-463 https://doi.org/10.1600/036364407781179671
  66. Weizao Huang W, Miao M, Joanna Kud J, Niu X, Ouyang B, Zhang J, Ye Z, Kuhl JC, Yongsheng Liu Y, Xiao F (2013) SlNAC1, a stress-related transcription factor, is fine-tuned on both the transcriptional and the post-translational level. New Phytologist 197:1214-1224 https://doi.org/10.1111/nph.12096
  67. Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279-1290 https://doi.org/10.1038/cr.2009.108
  68. Xu Q, He Q, Li S, Tian Z (2014) Molecular characterization of StNAC2 in potato and its overexpression confers drought and salt tolerance. Acta Physiol Plant 36:1841 https://doi.org/10.1007/s11738-014-1558-0
  69. Xu ZY, Kim SY, Hyeon DY, Kim DH, Dong T, Park Y, Jin JB, Joo SH, Kim SK, Hong JC, Hwang D, Hwang I (2013). The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell 25 4708-4724 https://doi.org/10.1105/tpc.113.119099
  70. Yang R, Deng C, Ouyang B, Ye Z (2011) Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38:857-863 https://doi.org/10.1007/s11033-010-0177-0
  71. Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A, Hirochika H, Omura T (2009) Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J 57:615-625 https://doi.org/10.1111/j.1365-313X.2008.03712.x
  72. Yoshii M, Yamazaki M, Rakwal R, Kishi-Kaboshi M, Miyao A, Hirochika H (2010) The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. Plant J 61: 804-815 https://doi.org/10.1111/j.1365-313X.2009.04107.x
  73. You J, Zhang L, Song B, Qi X, Chan Z (2015) Systematic Analysis and Identification of Stress-Responsive Genes of the NAC Gene Family in Brachypodium distachyon. PLos ONE 10: e0122027 https://doi.org/10.1371/journal.pone.0122027
  74. Zhao D, Derkx AP, Liu DC, Buchner P, Hawkesford MJ (2015) Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol (Stuttg). 17:904-913 https://doi.org/10.1111/plb.12296
  75. Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe. 11:587-596 https://doi.org/10.1016/j.chom.2012.04.014
  76. Zhu M, Hu Z, Zhou S, Wang L, Dong T, Pan Y, Chen G (2014a) Molecular Characterization of Six Tissue-Specific or Stress-Inducible Genes of NAC Transcription Factor Family in Tomato (Solanum lycopersicum). J Plant Growth Regulation 33:730-744 https://doi.org/10.1007/s00344-014-9420-6
  77. Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014b) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep. 33:1851-1863 https://doi.org/10.1007/s00299-014-1662-z
  78. Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z (2014c) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol. 55:119-135 https://doi.org/10.1093/pcp/pct162
  79. Zhu T, Nevo E, Sun D, Peng J (2012) Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants. Evolution 66:1833-1848 https://doi.org/10.1111/j.1558-5646.2011.01553.x
  80. Zou C, Sun K, Mackaluso JD, Seddon AE, Jin R, Thomashow MF, Shiu SH (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA 108:14992-14997 https://doi.org/10.1073/pnas.1103202108

Cited by

  1. Cultivar-Dependent Responses of Eggplant (Solanum melongena L.) to Simultaneous Verticillium dahliae Infection and Drought vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01181
  2. Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants vol.20, pp.2, 2019, https://doi.org/10.3390/ijms20020256