Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.7.451

The art of reporter proteins in science: past, present and future applications  

Ghim, Cheol-Min (School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology)
Lee, Sung-Kuk (School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology)
Takayama, Shuichi (School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology)
Mitchell, Robert J. (School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology)
Publication Information
BMB Reports / v.43, no.7, 2010 , pp. 451-460 More about this Journal
Abstract
Starting with the first publication of lacZ gene fusion in 1980, reporter genes have just entered their fourth decade. Initial studies relied on the simple fusion of a promoter or gene with a particular reporter gene of interest. Such constructs were then used to determine the promoter activity under specific conditions or within a given cell or organ. Although this protocol was, and still is, very effective, current research shows a paradigm shift has occurred in the use of reporter systems. With the advent of innovative cloning and synthetic biology techniques and microfluidic/nanodroplet systems, reporter genes and their proteins are now finding themselves used in increasingly intricate and novel applications. For example, researchers have used fluorescent proteins to study biofilm formation and discovered that microchannels develop within the biofilm. Furthermore, there has recently been a "fusion" of art and science; through the construction of genetic circuits and regulatory systems, researchers are using bacteria to "paint" pictures based upon external stimuli. As such, this review will discuss the past and current trends in reporter gene applications as well as some exciting potential applications and models that are being developed based upon these remarkable proteins.
Keywords
Gene fusion; Gfp; LacZ; Luciferase; Reporter;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Martin, L., Che, A. and Endy, D. (2009) Gemini, a bifunctional enzymatic and fluorescent reporter of gene expression. PLoS One 4, e7596. Doi:10.1371/journal. pone. 0007569.   DOI   ScienceOn
2 http://www.worldsciencefestival.com/blog/bioart_process.
3 http://www.psfk.com/2009/01/pic-painting-with-fluorescentbacteria.html.
4 http://www.binder-world.com/eu/en/company/binder-news.cfm/binder/83/laborschraenke-umweltsimulation/painting-with-bacteria.cfm.
5 http://www.microbialart.com/contributed-art/
6 http://faculty.washington.edu/afolch/FolchLabART.html.
7 Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., Davidson, E. A., Scouras, A., Ellington, A. D., Marcotte, E. M. and Voigt, C. A. (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441-442.   DOI   ScienceOn
8 http://www.utexas.edu/features/2005/bacteria/index.html.
9 Levskaya, A., Weiner, O. D., Lim, W. A. and Voigt C. A. (2009) Spatiotemporal control of cell signaling using a light-switchable protein interaction. Nature 461, 997-1001.   DOI   ScienceOn
10 Kim, P. M. and Tidor, B. (2003) Limitations of quantitative gene regulation models: a case study. Genome Res. 13, 2391-2395.   DOI   ScienceOn
11 Keiler, K. C., Waller, P. R. and Sauer, R. T. (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990-993.   DOI   ScienceOn
12 Buchler, N. E., Gerland, U. and Hwa, T. (2005) Nonlinear protein degradation and the function of genetic circuits. Proc. Natl. Acad. Sci. U.S.A. 102, 9559-9564.   DOI   ScienceOn
13 Ghim, C. M. and Almaas, E. (2008) Genetic noise control via protein oligomerization. BMC Sys. Biol. 2, 94.   DOI   ScienceOn
14 Ghim, C. M. and Almaas, E. (2009) Two-component genetic switch as a synthetic module with tunable stability. Phys. Rev. Lett. 103, 028101.   DOI   ScienceOn
15 Regaldo, A. (2005) Next dream for Venter: create entire set of genes from scratch. The Wall Street Journal, June 29th, p A1.
16 Hale, V., Keasling, J. D., Renninger, N. and Diagana, T. T. (2007) Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am. J. Trop. Med. Hyg. 77, 198-202.
17 Gachon, F., Nagoshi, E., Brown, S. A., Ripperger, J. and Schibler, U. (2004) The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113, 103-112.
18 Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E. A., Young, L., Qi, Z. Q., Segall-Shapiro, T. H., Calvey, C. H., Parmar, P. P., Hutchison, III, C. A., Smith, H. O. and Venter, J. C. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science DOI: 10.1126/science.1190719.   DOI
19 Khalil, A. S. and Collins, J. J. (2010) Synthetic biology: applications come of age. Nat. Rev. Genet. 11, 367-379.   DOI   ScienceOn
20 Jovic, A., Howell, B. and Takayama, S. (2009) Timing is everything: using fluidics to understand the role of temporal dynamics in cellular systems. Microfluid. Nanofluid. 6, 717-729.   DOI
21 Iwasaki, H., Williams, S. B., Kitayama, Y., Ishiura, M., Golden, S. S. and Kondo, T. (2000) A KaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101, 223-233.   DOI   ScienceOn
22 Tsuchiya, M. and Ross, J. (2002) Advantages of external periodic events to the evolution of biochemical oscillatory reactions. Proc. Natl. Acad. Sci. U.S.A. 100, 9691-9695.
23 Bennett, M. R., Pang, W. L., Ostroff, N. A., Baumgartner, B. L., Nayak, S., Tsimring, L. S. and Hasty, J. (2008) Metabolic gene regulation in a dynamically changing environment. Nature 454, 1119-1122.   DOI   ScienceOn
24 Hersen, P., McClean, M. N., Mahadevan, L. and Ramanathan, S. (2008) Signal processing by the HOG MAP kinase pathway. Proc. Natl. Acad. Sci. U.S.A. 105, 7165-7170.   DOI   ScienceOn
25 Guet, C. C., Elowitz, M. B., Hsing, W. and Leibler, S. (2002) Combinatorial synthesis of genetic networks. Science 296, 1466-1470.   DOI   ScienceOn
26 Mettetal, J. M., Muzzey, D., Gomez-Uribe, C. and van Oudenaarden, A. (2008) The frequency dependence of osmo- adaptation in Saccharomyces cerevisiae. Science 319, 482-484.   DOI   ScienceOn
27 Dyszel, J. L., Soares, J. A., Swearingen, M. C., Lindsay, A., Smith, J. N. and Ahmer, B. M. M. (2010) E. coli K-12 and EHEC genes regulated by SdiA. PLoS One 5, e8946.   DOI   ScienceOn
28 Tani, H., Maehana, K. and Kamidate, T. (2004) Chipbased bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal. Chem. 76, 6693-6697.   DOI   ScienceOn
29 Lee, J. H., Mitchell, R. J., Kim, B. C., Cullen, D. C. and Gu, M. B. (2005) A cell array biosensor for environmental toxicity analysis. Biosens. Bioelectron. 21, 500-507.   DOI   ScienceOn
30 Mitchell, R. J. and Gu, M. B. (2006) Characterization and optimization of two methods in the immobilization of 12 bioluminescent strains. Biosens. Bioelectron. 22, 192-199.   DOI   ScienceOn
31 Xu, C. W. (2002) High-density cell microarrays for parallel functional determinations. Genome Res. 12, 482-486.   DOI
32 Ingham, C., Bomer, J., Sprenkels, A., van den Berg, A., de Vos, W. and van Hylckama Vlieg, J. (2010) High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide. Lab Chip 10, 1410-1416.   DOI   ScienceOn
33 Bearinger, J. P., Dugan, L. C., Wu, L. G., Hill, H., Christian, A. T. and Hubbell, J. A. (2009) Chemical tethering of motile bacteria to silicon surfaces. Biotechniques 46, 209-216.   DOI   ScienceOn
34 Kuang, Y., Biran, I. and Walt, D. R. (2004) Living bacterial cell array for genotoxin monitoring. Anal. Chem. 76, 2902- 2909.   DOI   ScienceOn
35 Eun, Y. J. and Weibel, D. B. (2009) Fabrication of microbial biofilm arrays by geometric control of cell adhesion. Langmuir 25, 4643-4654.   DOI   ScienceOn
36 Tavana, H., Jovic, A., Mosadegh, B., Yi, L. Q., Liu, X., Luker, K. E., Luker, G. D., Weiss, S. J. and Takayama, S. (2009) Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat. Mater. 8, 736-741.   DOI   ScienceOn
37 Tavana, H., Mosadegh, B. and Takayama, S. (2010) Polymeric aqueous biphasic systems for non-contact cell printing on cells: Engineering heterocellular embryonic stem cell niches. Adv. Mater. online. DOI: 10.1002/adma. 200904271.   DOI   ScienceOn
38 Kim, J., Hahn, J. S., Franklin, M. J., Stewart, P. S. and Yoon, J. (2009) Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. J. Antimicrob. Chemother. 63, 129-135.   DOI   ScienceOn
39 Marti, M., Trotonda, M. P., Tormo-Mas, M. A., Vergara- Irigaray, M., Cheung, A. L., Lasa, I. and Penades, J. R. (2010) Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect. 12, 55-64.   DOI   ScienceOn
40 Wood, T. K, Gonzalez Barrios A. F., Herzberg, M. and Lee, J. (2006) Motility influences biofilm architecture in Escherichia coli. Appl. Microbiol. Biotechnol. 72, 361-367.   DOI
41 Yang, X., Ma, Q. and Wood, T. K. (2008) The R1 conjugative plasmid increases Escherichia coli biofilm formation through an envelope stress response. Appl. Environ. Microbiol. 74, 2690-2699.   DOI   ScienceOn
42 http://www.che.tamu.edu/groups/Wood/biofilm%20 architecture.htm
43 Lederberg, J. and Lederberg, E. M. (1952) Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63, 399-406.
44 Cowan, S. E., Gilbert, E., Liepmann, D. and Keasling, J. D. (2000) Commensal interactions in a dual-species biofilm exposed to mixed organic compounds. Appl. Environ. Microbiol. 66, 4481-4485.   DOI
45 Tomlin, K. L., Clark, S. R. and Ceri, H. (2004) Green and red fluorescent protein vectors for use in biofilm studies of the intrinsically resistant Burkholderia cepacia complex. J. Microbiol. Methods 57, 95-106   DOI   ScienceOn
46 Lee, J., Jayaraman, A. and Wood, T. K. (2007) Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 7, 42-56.   DOI   ScienceOn
47 Lee, S. K., Chou, H. H., Pfleger, B. F., Newman, J. D., Yoshikuni, Y. and Keasling, J. D. (2007) Directed evolution of AraC for improved compatibility of arabinose- and lactose-inducible promoters. Appl. Environ. Microbiol. 73, 5711-5715.   DOI   ScienceOn
48 Canton, B., Labno, A. and Endy, D. (2008) Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26, 787-793.   DOI   ScienceOn
49 Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A., Levskaya, A., Marcotte, E. M., Voigt, C. A. and Ellington, A. D. (2009) A synthetic genetic edge detection program. Cell 137, 1272-1281   DOI   ScienceOn
50 Bennett, M. R. and Hasty, J. (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10, 628-638.   DOI   ScienceOn
51 Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjorn, S. P., Givskov, M. and Molin, S. (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240-2246.
52 Heim, R., Cubitt, A. B. and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 663-664.
53 Simpson, M. L. (2007) A destabilized bacterial luciferase for dynamic gene expression studies. Syst. Synth. Biol. 1, 3-9.   DOI
54 Kuiper, I., Lagendijk, E. L., Pickford, R., Derrick, J. P., Lamers, G. E., Thomas-Oates, J. E., Lugtenberg, B. J. and Bloemberg, G. V. (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol. Microbiol. 51, 97-113.   DOI   ScienceOn
55 Sabev, H. A., Robson, G. D. and Handley, P. S. (2006) Influence of starvation, surface attachment and biofilm growth on the biocide susceptibility of the biodeteriogenic yeast Aureobasidium pullulans. J. Appl. Microbiol. 101, 319-330.   DOI   ScienceOn
56 Katranidis, A., Atta, D., Schlesinger, R., Nierhaus, K. H, Choli-Papadopoulou, T., Gregor, I., Gerrits, M., Buldt, G. and Fitter, J. (2009) Fast biosynthesis of GFP molecules: a single-molecule fluorescence study. Angew. Chem. Int. Ed Engl. 48, 1758-1761.   DOI   ScienceOn
57 Karin, M. (1994) Signal-transduction from the cell-surface to the nucleus through the phosphorylation of transcription factors. Curr. Opin. Cell Biol. 6, 415-424.   DOI   ScienceOn
58 Treisman, R. (1994) Ternary complex factors: growth factor regulated transcriptional activators. Curr. Opin. Genet. Dev. 4, 96-101.   DOI   ScienceOn
59 Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403, 335-338.   DOI   ScienceOn
60 Hasty, J., McMillen, D. and Collins, J. J. (2002) Engineered gene circuits. Nature 420, 224-230.   DOI   ScienceOn
61 Doyle, T. C., Burns, S. M. and Contag, C. H. (2004) In vivo bioluminescence imaging for integrated studies of infection. Cell. Microbiol. 6, 303-317.   DOI   ScienceOn
62 Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339-342.   DOI   ScienceOn
63 Van Dyk, T. K., DeRose, E. J. and Gonye, G. E. (2001) LuxArray, a high-density, genome wide transcription analysis of Escherichia coli using bioluminescent reporter strains. J. Bacteriol. 183, 5496-5505.   DOI   ScienceOn
64 Xiong, Y. Q., Willard, J., Kadurugamuwa, J. L., Yu, J., Francis, K. P. and Bayer, A. S. (2005) Real-time in vivo bioluminescent imaging for evaluating the efficacy of anti biotics in a rat Staphylococcus aureus endocarditis model. Antimicrob. Agents Chemother. 49, 380-387.
65 Mitchell, R. J., Ahn, J. M. and Gu, M. B. (2005) Comparison of Photorhabdus luminescens and Vibrio fischeri lux fusions to study gene expression patterns. J. Microbiol. Biotechnol. 15, 48-54.
66 Mitchell, R. J. and Gu M. B. (2004) Construction and characterization of novel dual-stress-responsive bacterial biosensors. Biosens. Bioelectron. 19, 977-985.   DOI   ScienceOn
67 Mitchell, R. J. and Gu M. B. (2004) An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl. Microbiol. Biotechnol. 64, 46-52.   DOI
68 Gupta, R. K., Patterson, S. S., Ripp, S., Simpson, M. L. and Sayler, G. S. (2003) Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res. 4, 305-313.   DOI   ScienceOn
69 Morin, J. G. and Hastings, J. W. (1971) Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J. Cell Physiol. 77, 305-312.   DOI
70 Morin, J. G. and Hastings, J. W. (1971) Energy transfer in a bioluminescent system. J. Cell Physiol. 77, 313-318.   DOI
71 Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802-805.   DOI
72 Casper, S. J. and Holt, C. A. (1996) Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. Gene 173, 69-73.   DOI   ScienceOn
73 Amsterdam, A., Lin, S., Moss, L. G. and Hopkins, N. (1996) Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Gene 173, 99-103.   DOI   ScienceOn
74 http://www.clontech.com/upload/images/ WP9X2790_FP.html.
75 Craig, D., Arriaga, E. A., Banks, P., Zhang, Y., Renborg, A., Palcic, M. M. and Dovichi, N. J. (1995) Fluorescencebased enzymatic assay by capillary electrophoresis laser- induced fluorescence detection for the determination of a few beta-galactosidase molecules. Anal. Biochem. 226, 147-153.   DOI   ScienceOn
76 Bronstein, I., Martin, C. S., Fortin, J. J., Olesen, C. E. and Voyta, J. C. (1996) Chemiluminescence: sensitive detection technology for reporter gene assays. Clin. Chem. 42, 1542-1546.
77 de Wet, J. R., Wood, K. V., Helinski, D. R. and DeLuca, M. (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 82, 7870-7873.   DOI
78 de Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R. and Subramani, S. (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725-737.   DOI
79 Keller, G. A., Gould, S., Deluca, M. and Subramani, S. (1987) Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 84, 3264-3268.   DOI
80 Ow, D. W., de Wet, J. R., Helinski, D. R., Howell, S. H., Wood, K. V. and Deluca, M. (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856-859   DOI   ScienceOn
81 Nordeen, S. K. (1988) Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques 6, 454-458.
82 Brasier, A. R., Tate, J. E. and Habener, J. F. (1989) Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 7, 1116-1122.
83 Mitchell, R. J. and Gu, M. B. (2005) Construction and evaluation of nagR-nagAa::lux fusion strains in the biosensing for salicylic acid derivatives. Appl. Biochem. Biotechnol. 120, 183-198.   DOI   ScienceOn
84 http://www.ncbi.nlm.nih.gov.
85 Wood, K. V. (1995) Marker proteins for gene expression. Curr. Opin. Biotechnol. 6, 50-58.   DOI   ScienceOn
86 Berman, M. L. and Beckwith, J. (1979) Fusions of the lac operon to the transfer RNA gene tyrT of Escherichia coli. J. Mol. Biol. 130, 285-301.   DOI
87 Imagawa, M., Yoshitake, S., Ishikawa, E., Endo, Y., Ohtaki, S., Kano, E. and Tsunetoshi, Y. (1981) Highly sensitive sandwich enzyme immunoassay of human IgE with beta- D-galactosidase from Escherichia coli. Clin. Chim. Acta 117, 199-207.   DOI   ScienceOn
88 Casadaban, M. J., Chou, J. and Cohen, S. N. (1980) In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J. Bacteriol. 143, 971-980.
89 Lis, J. T., Simon, J. A. and Sutton, C. A. (1983) New heat shock puffs and β-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell 35, 403-410.   DOI   ScienceOn
90 James, A. L., Perry, J. D., Ford, M., Armstrong, L. and Gould, F. K. (1996) Evaluation of cyclohexenoesculetinbeta- D-galactoside and 8-hydroxyquinoline-beta-D-galactoside as substrates for the detection of beta-galactosidase. Appl. Environ. Microbiol. 62, 3868-3870.