• Title/Summary/Keyword: Ordinary differential equation

Search Result 257, Processing Time 0.025 seconds

Conformable solution of fractional vibration problem of plate subjected to in-plane loads

  • Fadodun, Odunayo O.;Malomo, Babafemi O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.347-354
    • /
    • 2019
  • This study provides an approximate analytical solution to the fractional vibration problem of thin plate governing anomalous motion of plate subjected to in-plane loads. The method of variable separable is employed to transform the fractional partial differential equations under consideration into a fractional ordinary differential equation in temporal variable and a bi-harmonic plate equation in spatial variable. The technique of conformable fractional derivative is utilized to solve the resulting fractional differential equation and the approach of finite sine integral transform method is used to solve the accompanying bi-harmonic plate equation. The deflection field which measures the transverse displacement of the plate is expressed in terms of product of Bessel and trigonometric functions via the temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem of thin plate in literature. This work shows that conformable fractional derivative is an efficient mathematical tool for tracking analytical solution of fractional partial differential equation governing anomalous vibration of thin plates.

조화진동유동을 포함한 곡선 파이프 계의 혼돈 운동 연구 (Chaotic Vibration of a Curved Pipe Conveying Oscillatory Flow)

  • 박철희;홍성철;김태정
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.489-498
    • /
    • 1997
  • In this paper, chaotic motions of a curved pipe conveying oscillatory flow are theoretically investigated. The nonliear partial differential equation of motion is derived by Newton's method. The transformed nonlinear ordinary differential equation is a type of Hill's equation, which has the external and parametric excitation with a same frequency. Bifurcation curves of chaotic motion of the piping systems are obtained by applying Melnikov's method. Numerical simulations are performed to demonstrate theoretical results and show the strange attractor of the chaotic motion.

  • PDF

조화진동유동을 포함한 곡선파이프계의 혼돈운동 연구 (Chaotic Vibration of a Curved Oipe Conveying Oscillatory Flow)

  • 박철희;홍성철;김태정
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.288-294
    • /
    • 1996
  • In this paper, Chaotic motions of a curved pipe conveying oscillatory flow are theoretically investigated. The nonlinear partial differential equation of motion is derived by Newton's method. The transformed nonlinear ordinary differential equation is a type of Hill's equation, which have the parametric and external excitation. Bifurcation curves of chaotic motion of the piping systems are obtained by applying Melnikov's method. Poincare maps numerically demonstrate theoretical results and show transverse homoclinic orbit of the chaotic motion.

  • PDF

A SCHWARZ METHOD FOR FOURTH-ORDER SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM WITH DISCONTINUOUS SOURCE TERM

  • CHANDR, M.;SHANTHI, V.
    • Journal of applied mathematics & informatics
    • /
    • 제34권5_6호
    • /
    • pp.495-508
    • /
    • 2016
  • A singularly perturbed reaction-diffusion fourth-order ordinary differential equation(ODE) with discontinuous source term is considered. Due to the discontinuity, interior layers also exist. The considered problem is converted into a system of weakly coupled system of two second-order ODEs, one without parameter and another with parameter ε multiplying highest derivatives and suitable boundary conditions. In this paper a computational method for solving this system is presented. A zero-order asymptotic approximation expansion is applied in the second equation. Then, the resulting equation is solved by the numerical method which is constructed. This involves non-overlapping Schwarz method using Shishkin mesh. The computation shows quick convergence and results presented numerically support the theoretical results.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • 제86권3호
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

Model Reference Adaptive Control of a Time-Varying Parabolic System

  • Hong, Keum-Shik;Yang, Kyung-Jinn;Kang, Dong-Hunn
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.168-176
    • /
    • 2000
  • Related to the error dynamics of an adaptive system, averaging theorems are developed for coupled differential equations which consist of ordinary differential equations and a parabolic partial differential equation. The results are then applied to the convergence analysis of the parameter estimate errors in the model reference adaptive control of a nonautonomous parabolic partial differential equation with lowly time-varying parameters.

  • PDF

Classes of exact solutions for several static and dynamic problems of non-uniform beams

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제12권1호
    • /
    • pp.85-100
    • /
    • 2001
  • In this paper, an analytical procedure for solving several static and dynamic problems of non-uniform beams is proposed. It is shown that the governing differential equations for several stability, free vibration and static problems of non-uniform beams can be written in the from of a unified self-conjugate differential equation of the second-order. There are two functions in the unified equation, unlike most previous researches dealing with this problem, one of the functions is selected as an arbitrary expression in this paper, while the other one is expressed as a functional relation with the arbitrary function. Using appropriate functional transformation, the self-conjugate equation is reduced to Bessel's equation or to other solvable ordinary differential equations for several cases that are important in engineering practice. Thus, classes of exact solutions of the self-conjugate equation for several static and dynamic problems are derived. Numerical examples demonstrate that the results calculated by the proposed method and solutions are in good agreement with the corresponding experimental data, and the proposed procedure is a simple, efficient and exact method.

A LOCAL-GLOBAL VERSION OF A STEPSIZE CONTROL FOR RUNGE-KUTTA METHODS

  • Kulikov, G.Yu
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.409-438
    • /
    • 2000
  • In this paper we develop a new procedure to control stepsize for Runge- Kutta methods applied to both ordinary differential equations and semi-explicit index 1 differential-algebraic equation In contrast to the standard approach, the error control mechanism presented here is based on monitoring and controlling both the local and global errors of Runge- Kutta formulas. As a result, Runge-Kutta methods with the local-global stepsize control solve differential of differential-algebraic equations with any prescribe accuracy (up to round-off errors)

Lie Algebraic Solution of Stochastic Differential Equations

  • Kim, Yoon-Tae;Jeon, Jong-Woo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.25-30
    • /
    • 2003
  • We prove that the logarithm of the flow of stochastic differential equations is an element of the free Lie algebra generated by a finite set consisting of vector fields being coefficients of equations. As an application, we directly obtain a formula of the solution of stochastic differential equations given by Castell(1993) without appealing to an expansion for ordinary differential equations given by Strichartz (1987).

  • PDF