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CONDENSING MAPPINGS AND APPLICATIONS
TO EXISTENCE THEOREMS FOR COMMON
SOLUTION OF DIFFERENTIAL EQUATIONS

B. C. DHAGE

ABSTRACT. In this paper some common fixed point theorems for
pairs of condensing mappings in a Banach space are proved and
applications are given to a pair of nonlinear first order ordinary
differential equations in Banach spaces for proving the existence of
common solution under suitable conditions.

1. Introduction

Ambrosetti [2] first used the measure of noncompactness for proving
the existence theorems for differential equations in Banach spaces. But
at present there is an extensive literature on the existence theorems

~ for differential equations in abstract spaces which involves the use of
- measure of noncompactness. The main idea using the measure of non-
compactness in proving the solution of differential equations in question
is to convert it first into an equivalent operator equation and secondly
exploit the fixed point theorem of Darbo type or the comparison func-
tion of Kamke type and the detail treatment of this aspect is given in
Banas and Goebel [5], Deimling [9] and Martin [14]. But to the knowl-
edge of the present author, the problem of the existence of common .
solution of differential equations in abstract spaces is not discussed and
it is the aim of this paper to establish some results in this direction. It
seems that the present discussion is new to the literature and with that
many interesting results would be possible in the theory of nonlinear
differential equations in abstract spaces. In the main, in section 2, we
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prove some common fixed point theorems of Darbo (8] type for a pair
of condensing mappings in Banach spaces. Section 3 deals with the ex-
istence theorems for the common solution of two nonlinear differential
equations in Banach spaces.

2. Fixed Point Theorems

Let E denote a real Banach space with a norm || - ||g. A non-empty
closed subset K of E is said to be an order cone in E if
(i) K+ K CK,

(ii)) AK C K, for A > 0 and
(ili) K N —K = {6}, where 0 denotes the zero element of E.

Then the relation z < y if and only if y — z € K defines the partial or-
dering in F. We do not require any property of the cones in the present
discussion, however, the details of order cones and their properties may
be found in Guo and Lakshmikantham [11].

The measure of noncompactness of a bounded set A in F is a non-
negative real number a(A) with the following properties:

(M1) a(A) = 0 if and only if A is precompact, and

(M2) a(coA) = a(toA) = a(A), where coA and coA are the convex
and the closed convex hull of A in E, respectively.

We also suppose that the measure of noncompactness « satisfies the
following three properties:

(M3) A C B = a(A) <a(B),

(M4) a({AU B}) = max{a(A),a(B)}, and

(M5) a(AA) = |A|a(A4), A€ER.

There does exist the measure of noncompactness satisfying the prop-
erties (M3)-(M5). In fact, the Kuratowskii [12] and Hausdorff (6] mea-
sures of noncompactness satisfy the above properties. The details of
different type of measures of noncompactness and their properties are
given in Banas and Goebel [5]. Below we give some definitions of the
contraction mappings on the Banach space E with respect to the mea-
sure of noncompactness in E.

DEFINITION 2.1. A mapping T : E — F is said to be k-set-contra-
ction if for any bounded set A in E, T(A) is bounded and a(T(A4)) <
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ka(A) holds for some k > 0. In particular, if k < 1, then T is called a
strict-set-contraction on E.

DEFINITION 2.2. A mapping T : E — FE is called ¢-set-contraction
if for a bounded set A in E, T(A) is bounded and a(T'(4)) < ¢(a(A4)),
where ¢ : Ry — R, is a continuous and nondecreasing function. In

particular if ¢(r) < r, r > 0, then T is called a nonlinear-set-contraction
on E

DEFINITION 2.3. A mapping T : E — E is called condensing if for
any bounded set A in E, T(A) is bounded and a(T(4)) < a((A)) for
a(A) > 0.

REMARK 2.1. It is clear that strict-set-contraction = nonlinear-set-
contraction = condensing mapping.

A noteworthy fixed point theorem using the measures of non-com-
pactness in a Banach spaces is due to Sadovskii [15] which is a gen-
eralization of the fixed point theorem of Darbo [8] and includes the
well-known fixed point theorems of Schauder [16], Banach [4] and Kras-
noselskii [13], etc. as the special cases. This fixed point theorem is as
follows.

THEOREM A. Let X be a non-empty, closed, convex and bounded
subset of the Banach space FE and let T : X — X be a continuous and
condensing mapping. Then T has a fixed point.

In this section we first prove some common fixed point theorems for
a pair of condensing mappings on a Banach space E and then derive
some interesting corollaries. For we need the following definitions in
the sequel.

DEFINITION 2.4. A mapping T : E — E is said to be isotone in-
creasing if ¢,y € E with ¢ < y then Tz < Ty, where E is an ordered
Banach space with some order relation < in it.

DEFINITION 2.5. Two mappings S,T : F — FE are said to be weakly
isotone increasing if Sz < TSz and Tz < STz hold for all z € E.
Similarly the mappings S,T : E — FE are said to be weakly isotone
decreasing if Tz > STz and Sz > TSz holds for all z € E. We say
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two mappings S, T' are weakly isotone if they are either weakly isotone
increasing or weakly isotone decreasing on E.

EXAMPLE 2.1. Let R denote the real line with the usual norm |-| and
the order relation < and let X = [0,1] C R. Consider two mappings
f,9 :[0,1] — [0,1] defined by f(z) = % and g(z) = % for z € [0,1).
Then the pair of mappings f and g is weakly isotone decreasing on
[0,1]. To see this, '

[

1@ =325 =9(3) =90
and 2 g2 2
9@) =5 2> T =1(F) = fs()

for all z € [0,1]. Also note that the mappings f and g are isotone
increasing on [0, 1.

In the sequel, throughout this section, let E denote an ordered Ba-
nach space with the order relation < induced by the order cone K in
E and let X denote a non-empty, closed, convex and bounded subset
of E.

THEOREM 2.1. Let S,T : X — X be two continuous and condensing
mappings. Further if S and T are weakly isotone, then they have a
common fixed point, i.e., there is a point * in X such that Sz* = z* =
Tx>.

Proof. Let € X be arbitrary and consider the sequence {z,} in X
defined by

(21) =z = =z, Tons+1 = STopn, Tons2 = TT2n+1, n=0,1,2,--

Suppose that the mappings S and T are weakly isotone increasing on
X. Then form (2.1), it follows that

(22) 21 <3< Lxp <-ve

568



Condensing mappings and applications to differential equations

Let
A:{xl’x2,...’xn,...}
:{xl}u{za,ms,...,x2n+1,...}u{m2,x4,...,x2n,...}
= {371} U S(Al) U T(AQ),
where Ay = {z2,%4," ,Zon, -} C A and Ag = {x1,%3, " ,Z2n+1,

.-} C A. Clearly A C X and hence A is bounded. we shall prove that
A is precompact. Suppose not. Then by nature of o, we get

a(A) = a({ml} U S(Al) U T(Az))
= max{a(S(A41)), o(T(42))}
< aA).

This is a contradiction, and hence A is precompact and A is s compact.
In view of (2.2), the sequence {,} is monotone increasing in A. There-
fore, there is a unique-limit point z* in A such that lim,_,o0 Tn = =*
Again every subsequence of the sequence {x,} converges to the same
limit point z* € X. Thus we have

lim zo,41 =2 and lim z9,42 = 2*.
n—r o0 n—oo

By continuity of S and T, we obtain

' = lim zop41 = lim Szo, = S( Hm :Egn) = Sz*
7—>00 n—o0 n—oo

and

1 o _ . s
o = Jim wonse = limg 2anis = T(limg 22n4a) = Ta”
Similarly if S and T are weakly isotone decreasing on X, then it can be
proved that the sequence {z,} is monotone decreasing and converges
to the unique limit point x, € X, which is again a common fixed point
of S and T'. This completes the proof. O

As a consequence of Theorem 2.1, we obtain the following interesting
corollaries:
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COROLLARY 2.1. Let S,T : X — X be two completely continuous
mappings. Further if S and T are weakly isotone mappings, then they
have a common fixed point.

COROLLARY 2.2. Let S,T : X — X be two continuous and nonlinear-
set-contraction mappings. Further if S and T are weakly isotone map-
pings, then they have a common fixed point.

THEOREM 2.2. Let S,T : X — X be two continuous and condensing
mappings. Further suppose that

(i) S and T are isotone increasing,
(ii) S and T are commutative, i.e., S(T(z)) = T(S(z)) forallz € X,
and
(iii) z < Sz and ¢ < Tz for some z € X.

Then S and T have a common fixed point.

Proof. Define a sequence {z,} in X by (2.1). Then in view of the
hypotheses (i) - (ii), it follows that

$0S$1S$2S---ans...
The remainder of the proof is similar to the proof of Theorem 2.1. O

COROLLARY 2.3. Let S,T : X — X be two completely continuous
mappings. Further if the hypotheses (i)-(iii) of Theorem 2.2 hold, then
S and T have a common fixed point.

COROLLARY 2.4. Let S,T : X — X be two continuous and non-
linear-set-contraction mappings. Further if the hypotheses (i)-(iii) of
Theorem 2.2 hold, then S and T' have a common fixed point.

Next we obtain some interesting results about the existence of the
unique common fixed point for a pair of mappings on Banach spaces
by the application of Theorem 2.1. These results do not require the
compactness type conditions, but the mappings under consideration
are required to satisfy certain contraction type conditions. Also these
results have some nice applications for proving the existence as well as
uniqueness of the common solution of certain nonlinear differential and
integral problems. We need the following definition in the sequel.
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DEFINITION 2.6. A mapping T : F — E is called a nonlinear con-
traction if there exists a continuous and nondecreasing real function
ér : [0,00) — [0,00) such that

(2.3) 1Tz — Tylle < ¢r(llz - yl=)

for all z,y € E, where ¢r(r) < r for r > 0. In particular, if ¢(r) = kr,
0 < k < 1, then T is called a contraction mapping with contraction
constant k.

REMARK 2.2. It is easy to prove that every nonlinear contraction
mapping is a nonlinear set-contraction with respect to the Kuratowskii
measure of noncompactness and hence condensing, but the converse is
not necessarily true.

THEOREM 2.3. Let S§,T : X — X be two mappings satisfying
(i) S is nonlinear contraction,
(i) T is continuous and condensing, and
(iil) S and T are weakly isotone.
Then S and T have unique common fixed point which is the unique
fixed point of S.

Proof. Since S is a nonlinear contraction mappings, it is continuous
on X. If S has a fixed point, it is unique in view of the condition
(2.3). Also by Remark 2.2, S is a condensing mapping with respect to
the Kuratowskii measure of noncompactness a. Thus all the conditions
of Theorem 2.1 are fulfilled and hence an application of it yields that
S and T have a common fixed point. Since S cannot have two fixed
points, S and T have a unique common fixed point. This completes the
proof. a

COROLLARY 2.5. Let §,T : X — X be two mappings satisfying

(i) S is nonlinear contraction,
(i) T is continuous and nonlinear set-contraction and
(i) S and T are weakly isotone.
Then S and T have a unique common fixed point which is also a unique
fixed point of S.
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COROLLARY 2.6. Let 5,7 : X — X be two mappings satisfying

(1) S is nonlinear contraction, and
(ii) S and T are weakly isotone.

Then S and T have a unique common fixed point.

REMARK 2.3. We note that Theorems 2.3 and 2.4 give the numeri-
cal iterative method for finding the unique common fixed point of two
mappings S and T'. In this case the sequence {S"z}, z € X, of iterates
of S, converges to the unique common fixed point of S and T by the
following fixed point theorem of Boyd and Wong [7].

THEOREM B. Let X be a non-empty, closed, convex and bounded
subset of the Banach X and let T : X — X be a nonlinear contraction.
Then T has a unique fixed point x* and the sequence of successive
iterations {S™z}, z € X, converges to z*.

REMARK 2.4. We note that in Dhage et al. [10} some common fixed
point theorems for a pair of mappings in an ordered Banach space us-
ing the properties of the cones are proved which are further applied
to a pair of discontinuous nonlinear differential equations for proving
the existence of their common solution. The common fixed point the-
orems presented here in this paper do not invoke any property of the
cones in a Banach space, and so these results are different from that of
Dhage etal. [10]. Also the uniqueness of common fixed point of a pair
of mappings established here in this paper is not discussed in Dhage
et al. [10].

To illustrate the abstract theory developed in this section, some ap-
plications will be given to nonlinear differential equations for proving
the existence of common solution under certain compactness and Lips-
chitzicity conditions on the nonlinearity involved in the equations.

3. Differential Equations in Banach Spaces

Let R denote the real line and R the set of nonnegative real num-
bers. Let J = [to,to + a] C R for some g, a € R, a > 0, be a closed
and bounded interval. Let E denote the real Banach space with a norm
|l - |z and an order relation < induced by the order cone K in E. By
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a we denote the Kuratowskii measure of noncompactness in E. Now
consider the two nonlinear differential equations with the same initial
condition (for convenience)

z' = ft,z), ted,
(31) { z(tg) =x0 € F
and

x' = g(t,z), te,
(3-2) { z(ty) =z € E,

where f,g : J x E — E are continuous functions. Let C(J, F') denote
the space of all continuous E-valued functions on J. Define a norm
lzllx by

(3.3) lzllx = sup [=(t)| =
teJ
We define an order relation < in C(J, E) by the order cone K in
C(J, E) defined by
(3.4) K={zxeC(J,E)|z(t)e K forall t € J}.

Clearly the space C(J, E) with the norm | - || x and order relation <
becomes a ordered Banach space. Let B C C(J, E) be a set, then

B(t) = {f(t) | f € B} C E and B(J) = Ure sB(t).

To prove the main existence theorem, we need the following lemma,
the proof of which is well-known, see for €xample, Ambrosetti [2] and
Banas and Goebel [5].

LEMMA 3.1. For any bounded, equicontinuous set B in C(J, E),

(a) a(f,, B(s)ds) < [, a(B(s))ds, t€J, and
(b) a(B) = maxtes (B(t)).
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We consider the following assumptions:

(H1) The function f and g are bounded on J x E with bound M.

(H2) f and g are uniformly continuous on J x E.

(H3) For t € J, a(f(t, B)) < ¥(a(B)) and a(g(t, B)) < ¥,(a(B))
for any bounded set B C E, where ¥y and ¥, are non-negative con-
tinuous and nondecreasing real functions on R.

(H4) There exist continuous and nondecreasing functions ®;,®, :
R4+ — R such that

£t 2) = f(t,W)lle < @f(le - ylle)

and
lg(t,z) — 9(t,v)lle < Py(llz - yll)E)

for all (t,z),(t,y) € J x E.
(G1) The functions f(t,z) and g(t,z) are nondecreasing in z € E
forallt € J.

(G2) f(t,z) < g(t, f(t,x)) and g(t,x) < f(t,9(¢,7)) for all (t,2) €
JxE.

(G3) f(t,2(t) < zo + [i, f(r,a(r))dr and g(t,z(t)) < z0 + [y, o(,
z(7))dr for all (t,z) € J x C(J,E) and for a fixed element o € E
given in (3.1) and (3.2).

THEOREM 3.1. Assume (H1)-(H3) and (G1)-(G3) hold. Further if
a¥s(r) < r and a¥y(r) < r, for r > 0, then the differential equations
(3.1) and (3.2) have a common solution on J.

Proof. Define a subset X of the Banach space C(J, E) by
(35) X ={zeC,E): alts) = o, |a(t) — 2(s)| < Mt — s]}.

Clearly X is closed, convex, bounded and equi-continuous set in
C(J,E). Now the differential equations (3.1) and (3.2) are equivalent
to the integral equations

(3.6) 2(t) = zo + t F(s,2(s))ds, te J
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and
¢

(3.7) o(t) = 70 + / o(s,3(s))ds, t € J,
to

respectively.

Define the mappings S and T on X by

t

(3.8) Sz(t) = zo + ) f(s,z(s))ds, t € J,
(3.9) Tx(t) = xo + /tt g(s,z(s))ds, t € J.

Then the problem of the common solution of the differential equa-
tions is just reduced to finding the common fixed points of the operators
S and T on X. Obviously the mappings S and T are continuous and
map X into itself. We show that S and T are condensing mappings on
X with respect to the measure of noncompactness @ in C(J, E) defined
by @(B) = max;c j a(B(t)), where B is a bounded set in C(J, E). Now
for any bounded set B of X, by Lemma 3.1, we have

a(S(B(1)) < / a(f(s, B(s)))ds + a({zo})

to

(since a(A + B) < a(A) + a(B))

= / a(f(s, B(s)))ds

to

= [ vtatBs)s

to

(3.10) = a¥s(a(B)).
Taking maximum over ¢ in (3.10), we get
@(S(B)) < a¥s(a(B)) <a(B) if @(B) > 0.
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This shows that S is condensing on X. Similarly it is shown that T'
is also a condensing mapping on X. Further for any z € X,

Sz(t) =zo+ t f(s,z(s))ds

=m+/g@ﬂwmmw

to

t 8
Sm+/g®%+ f(r,2(r))dr)ds
to

to

=g +/ g(s, Sz(s))ds

to

= TSz(t)

forallt € J, ie.,, Sz < TSz for all x € X. Similarly Tz < STz for
all z € X. This shows that the mappings S and T are weakly isotone
increasing on X. Thus all the conditions of Theorem 2.1 are satisfied
and hence an application of it yields that the mappings S and T have
a common fixed point in X. This completes the proof. d

Next we prove the uniqueness theorem for common solution of the
differential equations (3.1) and (3.2) under weaker condition of the uni-
form continuity of the functions f and g. However, in this case the
functions f and g are required to satisfy certain contraction type con-
ditions.

THEOREM 3.2. Assume (H1), (H4) and (G1)-(G2) hold. Further
if a®¢(r) < r and a®4(r) < r for r > 0, then the differential equa-
tion (3.1) and (3.2) have a unique common solution z* on J, and the
sequences {z,} and {y,} defined by

t

(3.11) Zo = Lo, Tnt1(t) =xo+ [ f(s,zn(s))ds,
to

(3.12) ymwmwﬂw=m+/gw%MMs

to

converge to z*.
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Proof. Define a subset X of the Banach space C(J, E) by
(3.13) X ={zeC(JE):|z|| < Ma+ xo}.

Clearly X is a closed, convex and bounded subset of the Banach
space C(J, E). Define two mappings S and T on X by (3.8) and (3.9)
respectively. Obviously S and T' map X into itself. We show that S
and T are nonlinear contraction mappings on X. Let z,y € X, then by
(H4), we have

15=(t) — Sy(®)ll= < t 1f(s,2(s)) — f(s,y(s)) | eds

< / &;(llz(s) — u(s) | z)ds

to

t
< / 8|1z - yllx)ds.

to

Therefore,

(3.14) 1Sz — Syllx < B(lz — ylix),

where 3(r) = a®y(r) <7, 7> 0.

This shows that S is a nonlinear contraction on X. Similarly, it
can be shown the mapping T is also a nonlinear contraction on X.
Further proceeding as in the proof of Theorem 3.1, it can be proved
that the mappings S and T are weakly isotone increasing on X. Now an
application of Theorem 2.4 yields that S and T" have a unique common
fixed point in X. This further implies that the differential equations
(3.1) and (3.2) have a unique common solution z* in X, and by Remark
2.3, the sequences {r,} and {y,} of successive iterations of S and T'
converge to z*. This completes the proof. a
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