• Title/Summary/Keyword: Ordinary Differential Equations

Search Result 344, Processing Time 0.032 seconds

A study on the solutions of the 2nd order linear ordinary differential equations using fourier series (Fourier급수를 응용한 이계 선형 상미분방정식의 해석에 관한 연구)

  • 왕지석;김기준;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.100-111
    • /
    • 1984
  • The methods solving the 2nd order linear ordinary differential equations of the form y"+H(x)y'+G(x)y=P(x) using Fourier series are presented in this paper. These methods are applied to the differential equations of which the exact solutions are known, and the solutions by Fourier series are compared with the exact solutions. The main results obtained in these studies are summarized as follows; 1) The product and the quotient of two functions expressed in Fourier series can be expressed also in Fourier series and the relations between the Fourier coefficients of the series are obtained by multiplying term by term. 2) If the solution of the 2nd order lindar ordinary differential equation exists in a certain interval, the solution can be obtained using Fourier series and can be expressed in Fourier series. 3) The absolute errors of Fourier series solutions are generally less in the center of the interval than in the end of the interval. 4) The more terms are considered in Fourier series solutions, the less the absolute errors.rors.

  • PDF

Lie Algebraic Solution of Stochastic Differential Equations

  • Kim, Yoon-Tae;Jeon, Jong-Woo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.25-30
    • /
    • 2003
  • We prove that the logarithm of the flow of stochastic differential equations is an element of the free Lie algebra generated by a finite set consisting of vector fields being coefficients of equations. As an application, we directly obtain a formula of the solution of stochastic differential equations given by Castell(1993) without appealing to an expansion for ordinary differential equations given by Strichartz (1987).

  • PDF

GENERALIZED SECOND-ORDER DIFFERENTIAL EQUATIONS WITH TWO-POINT BOUNDARY CONDITIONS

  • Kim, Young Jin
    • The Pure and Applied Mathematics
    • /
    • v.26 no.3
    • /
    • pp.157-175
    • /
    • 2019
  • In this paper we define higher-order Stieltjes derivatives, and using Schaefer's fixed point theorem we investigate the existence of solutions for a class of differential equations involving second-order Stieltjes derivatives with two-point boundary conditions. The equations include ordinary and impulsive differential equations, and difference equations.

Analysis of Orthotropic Spherical Shells under Symmetric Load Using Runge-Kutta Method (Runge-Kutta법을 이용한 축대칭 하중을 받는 직교 이방성 구형쉘의 해석)

  • Kim, Woo-Sik;Kwun, Ik-No;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.115-122
    • /
    • 2002
  • It is often hard to obtain analytical solutions of boundary value problems of shells. Introducing some approximations into the governing equations may allow us to get analytical solutions of boundary value problems. Instead of an analytical procedure, we can apply a numerical method to the governing equations. Since the governing equations of shells of revolution under symmetric load are expressed by ordinary differential equations, a numerical solution of ordinary differential equations is applicable to solve the equations. In this paper, the governing equations of orthotropic spherical shells under symmetric load are derived from the classical theory based on differential geometry, and the analysis is numerically carried out by computer program of Runge-Kutta methods. The numerical results are compared to the solutions of a commercial analysis program, SAP2000, and show good agreement.

  • PDF

ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS OF LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS

  • Simeonov, P.S.;Bainov, D.D.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 1994
  • In the recent several years the theory of impulsive differential equations has made a rapid progress (see [1] and [2] and the references there). The questions of stability and periodicity of the solutions of these equations have been elaborated in sufficient details while their asymptotic behaviour has been little studied. In the present paper the asymptotic behaviour of the solutions of linear impulsive differential equations is investigated, generalizing the results of J. W. Macki and J.S. Muldowney, 1970 [3], related to ordinary differential equations without impulses.

  • PDF

A NEW FIFTH-ORDER WEIGHTED RUNGE-KUTTA ALGORITHM BASED ON HERONIAN MEAN FOR INITIAL VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS

  • CHANDRU, M.;PONALAGUSAMY, R.;ALPHONSE, P.J.A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.191-204
    • /
    • 2017
  • A new fifth-order weighted Runge-Kutta algorithm based on heronian mean for solving initial value problem in ordinary differential equations is considered in this paper. Comparisons in terms of numerical accuracy and size of the stability region between new proposed Runge-Kutta(5,5) algorithm, Runge-Kutta (5,5) based on Harmonic Mean, Runge-Kutta(5,5) based on Contra Harmonic Mean and Runge-Kutta(5,5) based on Geometric Mean are carried out as well. The problems, methods and comparison criteria are specified very carefully. Numerical experiments show that the new algorithm performs better than other three methods in solving variety of initial value problems. The error analysis is discussed and stability polynomials and regions have also been presented.

Performance measurement of safety-critical systems based on ordinary differential equations and Petri nets: A case study of nuclear power plant

  • Nand Kumar Jyotish;Lalit Kumar Singh;Chiranjeev Kumar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.861-869
    • /
    • 2023
  • This article proposes a novel approach to measure the performance of Safety-Critical Systems (SCS). Such systems contain multiple processing nodes that communicate with each other is modeled by a Petri nets (PN). The paper uses the PN for the performance evaluation of SCS. A set of ordinary differential equations (ODEs) is derived from the Petri net model that represent the state of the system, and the solutions can be used to measure the system's performance. The proposed method can avoid the state space explosion problem and also introduces new metrics of performance, along with their measurement: deadlock, liveness, stability, boundedness, and steady state. The proposed technique is applied to Shutdown System (SDS) of Nuclear Power Plant (NPP). We obtained 99.887% accuracy of performance measurement, which proves the effectiveness of our approach.

Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions

  • Naserian-Nik, A.M.;Tahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.217-240
    • /
    • 2010
  • A semi-analytical method is presented for accurately prediction of the free vibration behavior of generally laminated composite plates with arbitrary boundary conditions. The method employs the technique of separation of spatial variables within Hamilton's principle to obtain the equations of motion, including two systems of coupled ordinary homogeneous differential equations. Subsequently, by applying the laminate constitutive relations into the resulting equations two sets of coupled ordinary differential equations with constant coefficients, in terms of displacements, are achieved. The obtained differential equations are solved for the natural frequencies and corresponding mode shapes, with the use of the exact state-space approach. The formulation is exploited in the framework of the first-order shear deformation theory to incorporate the effects of transverse shear deformation and rotary inertia. The efficiency and accuracy of the present method are demonstrated by obtaining solutions to a wide range of problems and comparing them with finite element analysis and previously published results.

A LOCAL-GLOBAL VERSION OF A STEPSIZE CONTROL FOR RUNGE-KUTTA METHODS

  • Kulikov, G.Yu
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.409-438
    • /
    • 2000
  • In this paper we develop a new procedure to control stepsize for Runge- Kutta methods applied to both ordinary differential equations and semi-explicit index 1 differential-algebraic equation In contrast to the standard approach, the error control mechanism presented here is based on monitoring and controlling both the local and global errors of Runge- Kutta formulas. As a result, Runge-Kutta methods with the local-global stepsize control solve differential of differential-algebraic equations with any prescribe accuracy (up to round-off errors)