• 제목/요약/키워드: Orbital Angle

검색결과 65건 처리시간 0.026초

오비탈 성형을 이용한 피팅 파이프 플랜지 공정연구 (Fitting Pipe Flange Process Research Using Orbital Forming)

  • 김태걸;박준홍;박영철
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.57-62
    • /
    • 2015
  • A large variety of pipe flanges are required in the marine and construction industry. Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts. This approach is very simple and has been widely used for a long time; however, it results in high development costs and low productivity, and the products made through this approach usually have safety problems in the welding area. In this research, a new approach for forming pipe flanges based on cold forging and the floating die concept is presented. This innovative approach increases the effectiveness of the material usage and saves time and costs compared with the conventional welding method. To ensure the dimensional accuracy of the final product, finite element analysis (FEA) was carried out to simulate the process of cold forging, and orthogonal experiment methods were used to investigate the influence of four manufacturing factors (stroke of distance, pin die angle, forming of pipe diameter, and speed of the die) and predict the best combination of them. The manufacturing factors were obtained through numerical and experimental studies, which show that the approach is very useful and effective for the forming of pipe flanges and could be widely used in the future.

A Simulation Based Assessment for Evaluating the Effectiveness of Quasi-Zenith Satellite System

  • Suh, Yong-Cheol;Shibasaki, Ryosuke
    • 대한원격탐사학회지
    • /
    • 제19권3호
    • /
    • pp.181-190
    • /
    • 2003
  • Since the operation of the first satellite-based navigation service, satellite positioning has played an increasing role in both surveying and geodesy, and has become an indispensable tool for precise relative positioning. However, in some situations, e.g. at a low angle of elevation, the use of satellites for navigation is seriously restricted because obstacles like buildings and mountains can block signals. As a mean to resolve this problem, the quasi-zenith satellite system has been proposed as a next-generation satellite navigation system. Quasi-zenith satellite is a system which simultaneously deploys several satellites in a quasi-zenith geostationary orbit so that one of the satellites always stay close to the zenith if viewed from a specific point on the ground of East Asia. Thus, if a position measurement function compatible with CPS is installed in the quasi-zenith and stationary satellites, and these satellites are utilized together with the CPS, four satellites can be accessed simultaneously nearly all day long and a substantial improvement in position measurement, especially in metropolitan areas, can be achieved. The purpose of this paper is to evaluate the effectiveness of quasi-zenith satellite system on positioning accuracy improvement through simulation by using precise orbital information of the satellites and a three-dimensional digital map. Through this developed simulation system, it is possible to calculate the number of simultaneously visible satellites and available area for positioning without the need of actual observation. Furthermore, this system can calculate the Dilution Of Precision (DOP) and the error distribution.

The Spin-Orbit Alignment of Dark Matter Halo Pairs: Dependence on the Halo Mass and Environment

  • An, Sung-Ho;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.35.1-35.1
    • /
    • 2019
  • We present a statistical analysis on the spin-orbit alignment of dark matter halo pairs in cosmological simulations. The alignment is defined as the angular concurrence between the halo spin vector (${\vec{S}}$) and the orbital angular momentum vector (${\vec{L}}$) of the major companion. We identify interacting halo pairs with the mass ratios from 1:1 to 1:3, with the halo masses of 10.8 < $Log(M_{halo}/M_{sun}$) < 13.0, and with the separations smaller than a sum of their virial radii ($R_{12}<R_{1,vir}+R_{2,vir}$). Based on the total energy ($E_{12}$), the pairs are classified into flybys ($E_{12}$ > 0) and mergers ($E_{12}{\leq}0$). By measuring the angle (${\theta}_{SL}$) between ${\vec{S}}$ and ${\vec{L}}$, we confirm a strong spin-orbit alignment signal such that the halo spin is preferentially aligned with the orbital angular momentum of the major companion. We find that the signal of the spin-orbit alignment for the flyby is weaker than that for the merger. We also find an unexpected excess signal of the spin-orbit alignment at $cos{\theta}_{SL}{\sim}0.25$. Both the strength of the spin-orbit alignment and the degree of the excess depend only on the environment. We conclude that the halo spin is determined by the accretion in a preferred direction set by the ambient environment.

  • PDF

Glycinato 및 Glycine Ester 리간드의 전자구조와 반응성에 관한 분자궤도함수론적 연구 (MO Studies on the Electronic Structure and Reactivity of Glycinato, Glycine Ester Ligands)

  • 김자홍
    • 대한화학회지
    • /
    • 제24권1호
    • /
    • pp.15-19
    • /
    • 1980
  • Glycinato 및 glycine ester 리간드의 전자구조와 반응성을 조사하기 위하여 CNDO/2와 EHT 분자궤도함수법을 적용하였다. 두자리 배위자로 작용하는 glycinato 리간드의 구조는 탄소에서 질소쪽으로 가는 결합이 ${\Delta}O_4C_3C_2$${\Delta}O_3C_2N_1$ 평면에서 $105^{\circ}9'$의 dihedral angle을 가지는 Gly-I 구조가 Gly Ⅱ 구조보다 안정함을 알았으며, glycine ester 리간드에 대한 에너지 성분 분석 결과로서 alkyl가 치환에 따른 전자효과를 볼 수 있었다. CNDO/2 MO 계산으로 얻은 전자밀도 $q_N$값으로부터 리간드의 안정도 순위는 Glycinato>Gly-Et-Ester>Gly-i-Pr-ester>Gly-Me-ester 순으로 나타났다.

  • PDF

인공위성 자세감지 모델과 그 S/W 개발 (SATELLITE ATTITUDE SENSING MODEL AND THEIR S/W DEVELOPMENT)

  • 김영신;안웅영;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.69-78
    • /
    • 1999
  • 인공위성의 임무분석기술 중 하나로 인공위성의 센서가 실제의 궤도상에서 감지하는 것과 거의 같은 자료를 생성하는 자세감지(attitude sensing) S/W 시스템을 개발하였다. 이 S/W 시스템은 두 개의 모듈로 구성되어 있는데, 하나의 천체력 서비스 (ephemeris service) 모듈로 4개 행성(금성, 화성, 목성, 토성)의 섭동향을 고려하여 태양과 달의 위치를 구하고 4 $\times$4 지구중력 포텐셜항을 고려하여 위성의 위치를 계산하여 준다. 또 하나는 자세감지 모듈로 위성체의 자세요소($alpha,delta$)와 태양, 지구, 달의 위치로부터 위성의 자전축에 대한 각 천제들의 시선고도각(look angle)과 이면각(digedral angle)을 산출한다. 개발된 S/W 시스템으로 무궁화 위성의 자전축과 궤도요소를 변화시키면서 모의실험한 결과를 논의하였다.

  • PDF

Maxillofacial reconstruction with Medpor porous polyethylene implant: a case series study

  • Khorasani, Mansour;Janbaz, Pejman;Rayati, Farshid
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제44권3호
    • /
    • pp.128-135
    • /
    • 2018
  • Objectives: The role of alloplastic materials in maxillofacial reconstruction is still controversial. Determining the utility of porous, high-density, polyethylene implants as a highly stable and flexible, porous alloplast, with properties such as rapid vascularization and tissue ingrowth, is crucial in cases of maxillofacial deformities and aesthetic surgery. Materials and Methods: Thirty high-density porous polyethylene implants were implanted in 16 patients that had been referred to a private office over a three-year period. These implants were used for correcting congenital deformities, posttraumatic defects and improving the aesthetic in nasal, paranasal, malar, chin, mandibular angle, body and orbital areas. Results: The outcomes of the cases in this study showed good aesthetic and functional results. The majority of patients had no signs of discomfort, rejection or exposure. Two implants suffered complications: a complicated malar implant was managed by antibiotic therapy, and an infected mandibular angle implant was removed despite antibiotic therapy. Conclusion: Based on the results, the Medpor implant seems to be an excellent biomaterial for correcting various facial deformities. Advantages include its versatility and relatively ideal pore size that allows for excellent soft tissue ingrowth and coverage. It is strong, flexible and easy to shape.

Effect of geometrical parameters of reentry capsule over flowfield at high speed flow

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.487-501
    • /
    • 2017
  • The main purpose of the paper is to analyze effect of geometrical parameters of the reentry capsules such as radius of the spherical cap, shoulder radius, back shell inclination angle and overall length on the flow field characteristics. The numerical simulation with viscous flow past ARD (Atmospheric Reentry Demonstrator), Soyuz (Russian) and OREX (Orbital Reentry EXperimental) reentry capsules for freestream Mach numbers range of 2.0-5.0 is carried out by solving time-dependent, axisymmetric, compressible laminar Navier-Stokes equations. These reentry capsules appear as bell, head light and saucer in shape. The flow field features around the reentry capsules such as bow shock wave, sonic line, expansion fan and recirculating flow region are well captured by the present numerical simulations. A low pressure is observed immediately downstream of the base region of the capsule which can be attributed to fill-up in the growing space between the shock wave and the reentry module. The back shell angle and the radius of the shoulder over the capsule are having a significant effect on the wall pressure distribution. The effects of geometrical parameters of the reentry capsules will useful input for the calculation of ballistic coefficient of the reentry module.

시뮬레이션을 통한 레이저 융삭 추진의 우주 쓰레기 제거 응용 가능성 연구 (Research on Applicability of Laser Ablation Propulsion to Space Debris Removal by Simulations)

  • 유성문;이승민
    • 한국군사과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.169-176
    • /
    • 2022
  • Laser ablation propulsion(LAP) is the method to create impulse by laser ablation. It can be used to deorbit the space debris(SD), as its long-range property and versatility on any material. In this paper, we find out several requirements of the LAP system(LAPS) to deorbit the SD by simple numerical calculations of the SD orbit and laser beam flux. As a result, minimum operable altitude angle turned out to be a crucial variable to the LAPS. Moreover, if minimum operable altitude angle is 10°, and if the minimum distance between the LAPS and the SD is below 450 km, 1 m/s2 is sufficient to deorbit the SD by once. With 18 kJ/3 ns pulsed laser and cube shaped 100 kg SD, 1 m/s2 acceleration can be achieved by increasing the pulse repetition rate over 34~53 Hz, depending on the size of the SD. This capability could compare with the conceptual design of the Japan Establishment for a Power-laser Community Harvest(J-EPoCH) facility, which include 8 kJ, 5 PW@100 Hz laser.

TIDAL TAILS OF GLOBULAR CLUSTERS

  • YIM KI-JEONG;LEE HYUNG MOK
    • 천문학회지
    • /
    • 제35권2호
    • /
    • pp.75-85
    • /
    • 2002
  • We present N-body simulations of globular clusters including gravitational field of the Galaxy, in order to study effects of tidal field systematically on the shape of outer parts of globular clusters using NBODY6. The Galaxy is assumed to be composed of central bulge and outer halo. We mvestigate the cluster of multi-mass models with a power-law initial mass function (IMF) starting with different initial masses, initial number of particles, different slopes of the IMF and different orbits of the cluster. We have examined the general evolution of the clusters, the shape of outer parts of the clusters, density profiles and the direction of tidal tails. The density profiles appear to become somewhat shallower just outside the tidal boundary consistent with some observed data. The position angle of the tidal tall depends on the location in the Galaxy as well as the direction of the motion of. clusters. We found that the clusters become more elongated at the apogalacticon than at the pengalacticon. The tidal tails may be used to trace the orbital paths of globular clusters.

A study on the Nonlinear Normal Mode Vibration Using Adelphic Integral

  • Huinam Rhee;Kim, Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1922-1927
    • /
    • 2003
  • Nonlinear normal mode (NNM) vibration, in a nonlinear dual mass Hamiltonian system, which has 6$\^$th/ order homogeneous polynomial as a nonlinear term, is studied in this paper. The existence, bifurcation, and the orbital stability of periodic motions are to be studied in the phase space. In order to find the analytic expression of the invariant curves in the Poincare Map, which is a mapping of a phase trajectory onto 2 dimensional surface in 4 dimensional phase space, Whittaker's Adelphic Integral, instead of the direct integration of the equations of motion or the Birkhoff-Gustavson (B-G) canonical transformation, is derived for small value of energy. It is revealed that the integral of motion by Adelphic Integral is essentially consistent with the one obtained from the B-G transformation method. The resulting expression of the invariant curves can be used for analyzing the behavior of NNM vibration in the Poincare Map.