• Title/Summary/Keyword: Orbit Adjustment

Search Result 24, Processing Time 0.027 seconds

Block Adjustment and Orthorectification for Multi-Orbit Satellite Images

  • Chen, Liang-Chien;Liu, Chien-Liang;Teo, Tee-Ann
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.888-890
    • /
    • 2003
  • The objective of this investigation is to establish a simple yet effective block adjustment procedure for the orthorectification of multi-orbit satellite images. The major works of the proposed scheme are: (1) adjustment of satellite‘s orbit accurately, (2) calculation of the error vectors for each tie point using digital terrain model and ray tracing technique, (3) refining the orbit using the Least Squares Filtering technique and (4) generation of the orthophotos. In the process of least squares filtering, we use the residual vectors on ground control points and tie points to collocate the orbit. In orthorectification, we use the indirect method to generate the orthoimage. Test areas cover northern Taiwan. Test images are from SPOT 5 satellite. Experimental results indicate that proposed method improves the relative accuracy significantly.

  • PDF

Investigation of physical sensor models for orbit modeling

  • Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.217-220
    • /
    • 2005
  • Currently, a number of control points are required in order to achieve accurate geolocation of satellite images. Control points can be generated from existing maps or surveying, or, preferably, from GPS measurements. The requirement of control points increase the cost of satellite mapping, let alone it makes the mapping over inaccessible areas troublesome. This paper investigates the possibilities of modeling an entire imaging strip with control points obtained from a small portion of the strip. We tested physical sensor models that were based on satellite orbit and attitude angles. It was anticipated that orbit modeling needed a sensor model with good accuracy of exterior orientation estimation, rather then the accuracy of bundle adjustment. We implemented sensor models with various parameter sets and checked their accuracy when applied to the scenes on the same orbital strip together with the bundle adjustment accuracy and the accuracy of estimated exterior orientation parameters. Results showed that although the models with good bundle adjustments accuracy did not always good orbit modeling and that the models with simple unknowns could be used for orbit modeling.

  • PDF

Comparison of Position-Rotation Models and Orbit-Attitude Models with SPOT images (SPOT 위성영상에서의 위치-회전각 모델과 궤도-자세각 모델의 비교)

  • Kim Tae-Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.47-55
    • /
    • 2006
  • This paper investigates the performance of sensor models based on satellite position and rotation angles and sensor models based on satellite orbit and attitude angles. We analyze the performance with respect to the accuracy of bundle adjustment and the accuracy of exterior orientation estimation. In particular, as one way to analyze the latter, we establish sensor models with respect to one image and apply the models to other scenes that have been acquired from the same orbit. Experiment results indicated that fer the sole purpose of bundle adjustment accuracy one could use both position-rotation models and orbit-attitude models. The accuracy of estimating exterior orientation parameters appeared similar for both models when analysis was performed based on single scene. However, when multiple scenes within the same orbital segment were used for analysis, the orbit-attitude model with attitude biases as unknowns showed the most accurate results.

ATTITUED CONTROL BY ASYMMETRIC THRUSTERS’INDEPENDENT OFF MODULATION DURING ORBIT ADJUSTMENT MANEUVERS (궤도조절시 비대칭추력기 독립 비분사 조절에 의한 자세제어)

    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.265-272
    • /
    • 1999
  • A thrusters modulation method is suggested for spacecraft attitude control with asymmetric configured thrusters during orbit adjustment maneuvers. Attitude is controlled by thrusters off-modulation during orbit maneuvers. Usual control method for symmetric configured thrusters cam not be applied for asymmetric configured thrusters. Disturbance induced from thrusters asymmetricity shall be compensated during pulsing. In this paper, a thrusters control method using null solution is suggested, which is shown working well without inducing disturbance.

  • PDF

Three-Dimensional Positioning Using EROS A Stereo Pairs

  • Teo, Tee-Ann;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.606-608
    • /
    • 2003
  • This paper investigates the accuracy of three-dimensional positioning for EROS A stereo pairs when different numbers of ground control points are employed. The major works of the proposed schemes include: (1) initialization of orientation parameters (2) preliminary orbit fitting, (3) orbit refinement using the least squares filtering technique, and (4) space intersection. The experiment includes validation of positioning accuracy for an EROS A in-track stereo pair when different number of check points are employed.

  • PDF

Comparison of Orbit-attitude Model between Spot and Kompsat-2 Imagery (Spot 영상과 Kompsat-2 영상에서의 궤도 자세각 모델의 성능 비교)

  • Jeong, Jae-Hoon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 2009
  • This paper describes differences of performance when the orbit attitude model is applied to the respective images obtained from two different types of satellite. The one is Spot that rotates its pointing mirror and the other is Kompsat-2 that rotates its whole body when they obtain imagery for target. Our research scope is limited to the orbit-attitude model only as its good performance was proved in prior investigation. Model performances between two images were compared with sensor model accuracy and 3D coordinates calculation. The results show performances of the orbit-attitude model for each image type were different. For Spot imagery, the model required attitude angle to be included as adjustment parameters. For Kompsat-2 imagery, the model required high-order parameter for adjustment. This implies that satellite sensor model may be applied differently in accordance with platform's attitude control scheme and accuracy. Understanding of this information can be a base for improvement and development of model and application for new satellite images.

Accuracy Analysis of the Orbit Modeling with Various GCP Configurations and Unknown Parameter Sets (기준점 위치와 미지수 조합에 따른 궤도모델링의 정확도 분석)

  • Kim, Dong-Wook;Kim, Hyun-Suk;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In this paper, we analyzed the accuracy of orbit modeling with various control point configurations and adjustment unknown parameter sets. We used 152 GCP points acquired from GPS surveying, which were distributed from Choon-chun to Nha-ju along 420km in distance. For orbit modeling, seven adjustment parameter sets were chosen to include parameters for satellite position, velocity and attitude angles at different degree of freedom. Firstly we determined the location of model point in seven configurations. Secondly we estimated model parameters for each parameter set and for each GCP configurations. Finally we applied the model to reference check points and analyzed its accuracy. We were able to find the unknown parameter set that produce best orbit modeling performance regardless of the configuration of model points.

Stereoscopic 3D Modelling Approach with KOMPSAT-2 Satellite Data

  • Tserennadmid, T.;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2009
  • This paper investigates stereo 3D viewing for linear pushbroom satellite images using the Orbit-Attitude Model proposed by Kim (2006) and using OpenGL graphic library in Digital Photogrammetry Workstation. 3D viewing is tested with KOMPSAT-2 satellite stereo images, a large number of GCPs (Ground control points) collected by GPS surveying and orbit-attitude sensor model as a rigorous sensor model. Comparison is carried out by two accuracy measurements: the accuracy of orbit-attitude modeling with bundle adjustment and accuracy analysis of errors in x and y parallaxes. This research result will help to understand the nature of 3D objects for high resolution satellite images, and we will be able to measure accurate 3D object space coordinates in virtual or real 3D environment.

Precision GPS Orbit Determination and Analysis of Error Characteristics (정밀 GPS 위성궤도 결정 및 오차 특성 분석)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • A bi-directional, multi-step numerical integrator is developed to determine the GPS (Global Positioning System) orbit based on a dynamic approach, which shows micrometer-level accuracy at GPS altitude. The acceleration due to the planets other than the Moon and the Sun is so small that it is replaced by the empirical forces in the Solar Radiation Pressure (SRP) model. The satellite orbit parameters are estimated with the least-squares adjustment method using both the integrated orbit and the published IGS (International GNSS Service) precise orbit. For this estimation procedure, the integration should be applied to the partial derivatives of the acceleration with respect to the unknown parameters as well as the acceleration itself. The accuracy of the satellite orbit is evaluated by the RMS (Root Mean Squares error) of the residuals calculated from the estimated orbit parameters. The overall RMS of orbit error during March 2009 was 5.2 mm, and there are no specific patterns in the absolute orbit error depending on the satellite types and the directions of coordinate frame. The SRP model used in this study includes only the direct and once-per-revolution terms. Therefore there is errant behavior regarding twice-per-revolution, which needs further investigation.

THE BEAM POINTING OF COMMUNICATIN SATELLITE IN GEOSYNCHRONOUS INCLINED ORBIT (궤도경사각을 가진 통신위성의 빔 포인팅에 대한 연구)

  • 김방엽;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • We assume that the KOREASAT fails the entry of the geostationary orbit due to the error at the apogee kick motor firing. A simulation is done for the satellite that has a geosynochronous orbit with a non-zero degree inclination angle due to the failure at the apogee kick motor firing caused by the unbalance of the fuel storage and the spin of the thrust vector, etc. We analyzed the evolution of the orbit using the perturbation theory and calculated the changes of the eccentricity and the inclination. WHen a communication satellite has the figure eight trajectory, the beam point also traces the satellite. In this paper, We develope an algorithm to attack the above problem by stabilizing the beam point using the adjustment of the roll angle of the satellite. The spin action on the polarization plane that occurs when a satellite passes the ascending node and descending node affects the efficiency of the communication a lot, so we did another simulation for the better yaw angle adjustment for the KOREASAT to reduce the spin actino on the polarization plane.

  • PDF