• Title/Summary/Keyword: Optimum replacement

Search Result 273, Processing Time 0.033 seconds

Multivariate Rotation Design for Population Mean in Sampling on Successive Occasions

  • Priyanka, Kumari;Mittal, Richa;Kim, Jong-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.445-462
    • /
    • 2015
  • This article deals with the problem of estimation of the population mean in presence of multi-auxiliary information in two occasion rotation sampling. A multivariate exponential ratio type estimator has been proposed to estimate population mean at current (second) occasion using information on p-additional auxiliary variates which are positively correlated to study variates. The theoretical properties of the proposed estimator are investigated along with the discussion of optimum replacement strategies. The worthiness of proposed estimator has been justified by comparing it to well-known recent estimators that exist in the literature of rotation sampling. Theoretical results are justified through empirical investigations and a detailed study has been done by taking different choices of the correlation coefficients. A simulation study has been conducted to show the practicability of the proposed estimator.

En Experimental Study on t he Properties of Mortar Containing Recycled Glass (재생유리를 혼입한 모르터의 특성에 관한 실험적 연구)

  • 배수호;정영수;석윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.36-41
    • /
    • 1998
  • Recently, it has been reported that recycling of wasted glasses should be a hot issue in related business field. Thus, the purpose of this experimental research is to recycle wasted glasses by substituting for the cement in mortar and concrete. As a pilot test, workability and the strength of mortar with recycled glass have been tested and analyzed according to replacement ratio of recycled glass with grain size of them. As a result, considering the workability and the strength of mortar containing recycled glass, the existence of the optimum replacement ratio and grain size of them have been obtained.

  • PDF

An Experimental Study on the Characteristics of Concrete Containing Admixtures (혼화재를 혼입한 콘크리트의 특성에 관한 실험적 연구)

  • 배수호;윤상대;박광수;신의균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.89-94
    • /
    • 1996
  • The purpose of this study is to investigate the workability and strength of concrete containing admixtures. For this purpose, four kinds of admixtures such as silica fume, fly ash, ground granulated blast-furnace, rice husk ash are selected and tested on the workability and strength according to the replacement ratio of them. As a result, considering their workability and strength, the optimum replacement ratio of them were obtained for each concrete containting admixtures.

  • PDF

Study on the maintenance period allocation method for railway signal equipment (철도신호설비 유지보수주기 할당에 관한 연구)

  • Lee, Kang-Mi;Shin, Duck-O;Lee, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.647-652
    • /
    • 2008
  • Railway signal system has been more complex, larger and required high reliability. So, maintenance by experience must be changed to optimize maintenance program or introduced systematic method for estabilish new maintenance program. In this paper, we introduced the maintenance period decision method which are Age based method and Block replacement method based on the failure distribution for the equipment. So, we allocated optimum maintenacne period for the railway signal equipment using block replacement method.

  • PDF

Optimization of the Reduced-Calorie Yellow Layer Cake Preparations (저열량 레이어 케익 제조 공정의 최적화)

  • Kim, Yang-Hwa;L.Kim, Hye-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • Fat and sugar reduced yellow layer cake system was developed with varied replacement level of 30%, 60%, and 90% for AD(amylodextrin) and 10%, 30%, and 50% for PD(polydextrose). Physicochemical and sensory characteristics were investigated and optimum replacement level was also decided using response surface methodology. Sample groups of PD10AD30 had significantly the lowest specific gravity and viscosity, indicating the stable batter system with high air incorporation. Sample groups with PD10AD90 showed the highest volume index and were not significantly different from those of the PD10AD30. Sensory results indicated that PD30AD30 were significantly the most springy and moist, and the least hard of all sample groups. Sample groups with PD10AD90 had the least adhesiveness value. To establish the optimum substitution level using RSM, the restriction level was set up as moistness over five point, hardness under five points, and adhesiveness under four points. The optimum substitution level was 20% for PD and 88% for AD.

Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates

  • Saluja, Sorabh;Goyal, Shweta;Bhattacharjee, Bishwajit
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Roller Compacted Concrete (RCC) is a zero slump concrete consisting of a mixture of cementitious materials, sand, dense graded aggregates and water. In this study, an attempt has been made to investigate the effect of aggregate type on strength and abrasion resistance of RCC made by using granulated blast furnace slag (GGBS) as partial replacement of cement. Mix proportions of RCC were finalized based upon the optimum water content achieved in compaction test. Two different series of RCC mixes were prepared with two different aggregates: crushed gravel and limestone aggregates. In both series, cement was partially replaced with GGBS at a replacement level of 20%, 40% and 60%. Strength Properties and abrasion resistance of the resultant mixes was investigated. Abrasion resistance becomes an essential parameter for understanding the acceptability of RCC for rigid pavements. Experimental results show that limestone aggregates, with optimum percentage of GGBS, perform better in compressive strength and abrasion resistance as compared to the use of crushed gravel aggregates. Observed results are further supported by stoichiometric analysis of the mixes by using basic stoichiometric equations for hydration of major cement compounds.

Experimental Study on the Properties of Recycled Concrete using Recycled Coarse Aggregates and Steel Slag Fine Aggregates (재생 굵은골재와 제강슬래그 잔골재를 사용한 재생 콘크리트의 특성에 관한 실험적 연구)

  • Lee, Jaesung;Na, Okpin
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.63-71
    • /
    • 2015
  • The purpose of this study is to investigate the optimum replacement rate and material properties of eco-friendly recycled concrete using recycled coarse aggregates and rapid-chilled steel slag fine aggregates. The replacement rate of recycled coarse aggregates was increased from 30% to 50% of total volume of coarse aggregates and the rapid-chilled steel slag aggregates were substituted for 10% to 50% of total volume of fine aggregates. As a result, the increment of recycled coarse aggregates in concrete caused the reduction of the compressive strength. On the other hand, as increasing the replacement ratio of rapid chilled steel slag aggregates, the compressive strength was enhanced. Furthermore, the optimum use of rapid chilled steel slag aggregates was suggested up to 20~30% of fine aggregates and the use of it could be helpful to expand the replacement rate of recycled aggregates.

Determination of Optimal Time to Replace On-S Water Pipeline by Analyzing Water Main Failures and Economical Efficiency (수도사고 분석 및 경제성 평가를 통한 상수관로 최적 교체시기 결정)

  • Kim, Jong-Sin;Jung, Kwan-Sue;Bae, Chul-Ho;Lee, Doo-jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.279-285
    • /
    • 2009
  • In this study, applied to the industrial water service, it is verified feasibility of break-even analysis method which has not been introduced in Korea. The On-san water pipeline of 7.1km among the Ul-san industrial water service is selected and the optimal replacement time calculated by break-even analysis method is year 2033 to 2044 which will be 53 to 67 years since the pipes were buried. If indirect cost such as the value of lost water and traffic disruption, service interruption, etc. is calculated as 30 and 100% of the direct cost, the financially optimum replacement time is advanced 3 to 9 years. These ways present rational criteria to establish long-term plan for budget and to execute the limited budget efficiently.

Load Redistribution of Prestressed Concrete Girder Bridges during the Bearing Replacement

  • Park, Sun-Kyu;Kim, Hyeong-Yeol;Kim, Jung-Hyuk
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.141-151
    • /
    • 1999
  • In the replacement of bearing system of bridges, the jacking work to secure work spaces may cause damage of the superstructure, hence the behavior of superstructure by the jacking force must be considered. Especially, in prestressed concrete I-type girder bridges, considering the stress concentration at the girder and the load redistribution of superstructure, the allowable jacking force and jacking sequence have to be determined. In this study, an analytical method is proposed to calculate the jacking force and overall jacking sequence for the replacement of bearing system without any damage to the superstructure. The stress concentration at the girder and load redistribution of the deck due to jacking force are considered to compute the allowable jacking force for each girder and overall jacking sequence for girders in the deck. Using the solution algorithm developed in this study, the optimum jacking sequence and required jacking force for the prestressed concrete I-type gilder bridge having the standard sections are calculated.

  • PDF

Performance investigation of palm kernel shell ash in high strength concrete production

  • Mosaberpanah, Mohammad A.;Amran, Y.H. Mugahed;Akoush, Abdulrahman
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.577-585
    • /
    • 2020
  • By the increasing amount of waste materials, it eventually dumped into the environment and covering a larger area of the landfill which cause several environmental pollution problems. The utilization of Palm Kernal Shell Ash (PKSA) in concrete might bring a great benefit in addressing both environmental and economic issues. This article investigates the effect of PKSA as a partial cement replacement of High Strength Concrete (HSC). Several concrete mixtures were prepared with different PKSA of 0%, 10%, 20%, and 30% replaced by the cement mass. This procedure was replicated twice for the two different target mean strengths of 40 MPa and 50 MPa. The mixtures were prepared to test different fresh and hardened properties of HSC including slump test, the compressive strength of 3, 7, 14, 28, and 90 days, flexural strength of 28-days, drying shrinkage, density measurement, and sorptivity. It was observed 10% PKSA replacement as optimum percentage which reduced the drying shrinkage, sorptivity, and density and improved the late-age compressive strength of concrete.