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Abstract
This article deals with the problem of estimation of the population mean in presence of multi-auxiliary in-

formation in two occasion rotation sampling. A multivariate exponential ratio type estimator has been proposed
to estimate population mean at current (second) occasion using information on p-additional auxiliary variates
which are positively correlated to study variates. The theoretical properties of the proposed estimator are inves-
tigated along with the discussion of optimum replacement strategies. The worthiness of proposed estimator has
been justified by comparing it to well-known recent estimators that exist in the literature of rotation sampling.
Theoretical results are justified through empirical investigations and a detailed study has been done by taking
different choices of the correlation coefficients. A simulation study has been conducted to show the practicability
of the proposed estimator.

Keywords: population mean, successive sampling, bias, mean square error, optimum replace-
ment strategy, multi-auxiliary information

1. Introduction

Longitudinal surveys are correlational research studies that involve repeated observations of the same
variables over long periods. Longitudinal studies are often used in psychology to study developmen-
tal trends across life spans and in sociology to study generational or lifetime. Longitudinal studies
track the same people and the observed differences in people are less likely to be the result of cultural
differences across generations. Because of this benefit, longitudinal studies make observing changes
more accurate, and they are applied in various other fields. In medicine, the design is used to un-
cover predictors of certain diseases. In advertising, the design identifies the changes that advertising
has produced in the attitudes and behaviors of those within the target audience who have seen the
advertising campaign.

Many researchers have taken advantage of longitudinal surveys, refer to Chaturvedi and Tripathi
(1983), Das (1982), Gupta (1979), Jessen (1942), Patterson (1950) and Rao and Graham (1964).

Sometimes we sense that different variables are related to the study characteristics that may be
helpful to estimate the study characteristics. For example many countries keep track of the population
through a total population register that is often used as a sampling frame for individuals or house-
holds. The register contains a number of variables (some quantitative and some categorical) that may
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serve as auxiliary information to identify the human development index. Age and the taxable income
of individual are the quantitative auxiliary variables while sex of the individual, marital status and
residential specification may be considered as categorical auxiliaries.

Utilizing the auxiliary information on both the occasions Biradar and Singh (2001), Feng and
Zou (1997), Singh (2005), Singh and Singh (2001), Singh et al. (1991), Sen (1972, 1973) have
successfully added some literature in the field of successive sampling. Singh and Karna (2009), Singh
and Prasad (2010), Singh and Priyanka (2006, 2007, 2008) proposed a variety of estimators to estimate
the population mean on current (second) occasion in two occasions successive sampling.

The linear regression estimator is more efficient than the ratio estimator except when the regression
line y on x passes through the neighborhood of the origin; in this case the efficiencies of the estimators
are almost equal. There are also many practical situations when the regression line does not pass
through the neighborhood of the origin, in such cases the ratio estimator does not perform as good as
the linear regression estimator. The proposed work utilizes multi-auxiliary information available on
both occasions and stable overtime. Multi-auxiliary information are blended with exponential type
structures and a multivariate exponential ratio type estimator has been proposed to estimate the popu-
lation mean at the current occasion in two occasion rotation sampling. The properties of the proposed
estimator are derived up-to the first order of approximation and optimum replacement strategies are
discussed. The properties have been corroborated empirically. The proposed multivariate estimator
is compared with recent literature in rotation sampling due to Singh (2005) and Singh and Priyanka
(2008). A simulation study has been conducted to determine the working efficiency of the proposed
estimator. It has been observed that the proposed exponential type structure works well even if the
auxiliary variables have a low correlation with the study variable.

2. Sample Structure and Notations

Let U = (U1,U2, . . . ,UN) be the finite population of N units, which has been sampled over two
occasions. We assumed that the size of the population remains unchanged but the values of units
change over two occasions. The characters under study have been denoted by x and y on the first
and second occasions respectively. It has been assumed that information on p-additional auxiliary
variables, z1, z2, . . . , zp whose population means are known, correlated to x and y, stable over the
occasions and readily available on both occasions. Simple random sample (without replacement) of
n units is taken on the first occasion. A random subsample of m = nλ units is retained for use on the
second (current) occasion. Now at the current occasion a simple random sample (without replacement)
of u = (n−m) = nµ units is drawn fresh from the remaining (N − n) units of the population so that the
sample size on the second occasion is also n. Let µ and λ (µ + λ = 1; 0 ≤ µ, λ ≤ 1) are the fractions
of fresh and matched samples respectively at the second (current) occasion.

3. Formulation of the Proposed Estimator T|pT|pT|p

To estimate the population mean Ȳ on the current (second) occasion, utilizing p-additional auxiliary
information which is stable over time and readily available on both the occasions, a multivariate
weighted estimator Tu based on sample of the size u = nµ drawn fresh on the current (second) occasion
is proposed as

Tu =W′
uTexp(u), (3.1)
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where

Wu is a column vector of p-weights given by Wu = [wu1 wu2 · · · wup ]′,

Texp(u) =


T (1, u)
T (2, u)

...
T (p, u)

, where T (i, u) = ȳu exp
(

Z̄i − z̄i(u)
Z̄i + z̄i(u)

)
for i = 1, 2, 3, . . . , p,

such that 1′Wu = 1, where 1 is a column vector of order p.
The second estimator Tm is also proposed as weighted multivariate chain type ratio to the expo-

nential ratio estimator based on sample size m = nλ common to both occasions and given by

Tm =W′
mTexp(m, n), (3.2)

where

Wm is a column vector of p-weights as Wm = [wm1 wm2 · · · wmp ]′,

Texp(m, n) =


T (1,m, n)
T (2,m, n)

...
T (p,m, n)

 , where T (i,m, n) =
(

ȳ∗(i,m)
x̄∗(i,m)

)
x̄∗(i, n),

where

ȳ∗(i,m) = ȳm exp
(

Z̄i − z̄i(m)
Z̄i + z̄i(m)

)
, x̄∗(i,m) = x̄m exp

(
Z̄i − z̄i(m)
Z̄i + z̄i(m)

)
,

x̄∗(i, n) = x̄n exp
(

Z̄i − z̄i(n)
Z̄i + z̄i(n)

)
, for i = 1, 2, 3, . . . , p.

Such that 1′Wm = 1, where 1 is a column vector of order p.
The optimum weights Wu and Wm in Tu and Tm are chosen by minimizing mean square errors

respectively.
Now a convex linear combination of the two estimators Tu and Tm has been considered to define

the final estimator of population mean Ȳ on the current occasion and is given as

T|p = φTu + (1 − φ)Tm, (3.3)

where φ (0 ≤ φ ≤ 1) is an unknown constant to be determined so as to minimize the mean square
error of the estimator T|p.

4. Properties of the Proposed Estimator T|p

The properties of the proposed estimator T|p are derived under following large sample approximations:
ȳu = Ȳ(1 + e0), ȳm = Ȳ(1 + e1), x̄m = X̄(1 + e2), x̄n = X̄(1 + e3), z̄i(u) = Z̄i(1 + e4i), z̄i(m) = Z̄i(1 + e5i)
and z̄i(n) = Z̄i(1 + e6i) such that |ek | < 1 ∀ k = 0, 1, 2, 3, 4, 5 and 6 and |eki| < 1 ∀ i = 1, 2, 3, . . . , p.
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Under the above transformations, the estimators Tu and Tm take the following forms:

T (i, u) =
Ȳ
8

(
8 + 8e0 − 4e4i − 4e0e4i + 3e2

4i

)
, for i = 1, 2, . . . , p, (4.1)

T (i,m, n) =
Ȳ
8

(8 + 8e1 − 8e2 + 8e3 − 4e6i − 8e1e2 + 8e1e3 − 4e1e6i − 8e2e3

+ 4e2e6i − 4e3e6i + 8e2
2 + 3e2

6i

)
, for i = 1, 2, . . . , p. (4.2)

Thus we have the following theorems:

Theorem 1. The bias of the proposed estimator T|p to the first order of approximation is obtained as

B(T|p) = φB(Tu) + (1 − φ)B(Tm), (4.3)

B(Tu) =
1
u

W′
uBu, (4.4)

B(Tm) =W′
m

(
1
m

Bm1 +
1
n

Bm2

)
, (4.5)

where

Bu =
(
B1(u), B2(u), . . . , Bp(u)

)′
, Bi(u) =

1
u

Ȳ
3

8
C002

Z̄2
i

− 1
2

C011

ȲZ̄i

 , for i = 1, 2, 3, . . . , p,

Bm1 = Ȳ
(C200

X̄2
− C110

X̄Ȳ

)
,

Bm2 =
(
Bm21, Bm22, . . . , Bm2p

)
,

where

Bm2i = Ȳ
3

8
C002

Z̄2
i

+
C110

X̄Ȳ
− 1

2
C011

ȲZ̄i
−C200

X̄2

 , Crst = E
[(

xi − X̄
)r (

yi − Ȳ
)s (

zi − Z̄
)t
]

;

(r, s, t) ≥ 0 for i = 1, 2, 3, . . . , p.

Proof: The bias of the estimator T|p is given by

B(T|p) = E
[
T|p − Y

]
= φB(Tu) + (1 − φ)B(Tm),

where B(Tu) = E[Tu − Y] and B(Tm) = E[Tm − Y].
Using large sample approximations assumed in Section 4 and retaining terms upto the first order

of approximations, the expression for T (i, u) and T (i,m, n) for i = 1, 2, 3, . . . , p are obtained as in
equations (4.1) and (4.2) respectively and hence using equations (4.1) and (4.2) in equations (3.1)
and (3.2) respectively the expression for B(Tu) and B(Tm) are obtained as in equations (4.4) and (4.5)
respectively, hence the expression for bias of the estimator T|p is obtained as in equation (4.3). �

Theorem 2. The mean square error of the estimator T|p is given by

M(T|p) = φ2M(Tu) + (1 − φ)2M(Tm) + 2φ(1 − φ) cov(Tu,Tm), (4.6)
M(Tu) =W′

uKuWu, (4.7)
M(Tm) = (B)W′

mEWm +W′
mKmWm, (4.8)
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where

Wu =
[
Wu1 Wu2 · · ·Wup

]′
, Wm =

[
Wm1 Wm2 · · ·Wmp

]′
,

E is a unit matrix of order p × p,

B =
(

1
m
− 1

N

)
B1, B1 = 2Ȳ2(1 − ρyx)C2

0,

Ku =

(
1
u
− 1

N

)
Ku∗ , Km =

(
1
u
− 1

N

)
Km∗ ,

where

Ku∗ =


ku11 ku12 . . . ku1p

ku21 ku22 . . . ku2p
...

...
. . .

...
kup1 kup2 . . . kupp


p×p

and Km∗ =


km11 km12 . . . km1p

km21 km22 . . . km2p
...

...
. . .

...
kmp1 kmp2 . . . kmpp


p×p

,

where

kuii = Ȳ2
(
C2

0 +
1
4

C2
zi
− ρyziC0Czi

)
,

kui j = Ȳ2
(
C2

0 −
1
2
ρyzi

C0Czi −
1
2
ρyz j

C0Cz j +
1
4
ρziz jCziCz j

)
,

kmii = Ȳ2
(
C2

0(2ρyx−1) − ρyzi
C0Czi +

1
4

C2
zi

)
,

kmi j = Ȳ2
(
C2

0(2ρyx − 1) − 1
2
ρyzi

C0Czi −
1
2
ρyz j

C0Cz j +
1
4
ρziz jCziCz j

)
∀ i , j = 1, 2, 3, . . . , p.

Proof: The mean square error of the estimator T|p is given by

M(T|p) = E
[
T|p − Ȳ

]2

= E
[
φ
(
Tu − Ȳ

)
+ (1 − φ)

(
Tm − Ȳ

)]2

= φ2M(Tu) + (1 − φ)2M(Tm) + 2φ(1 − φ) cov(Tu,Tm),

where M(Tu) = E[Tu − Ȳ]2 and M(Tm) = E[Tm − Ȳ]2.
The estimators Tu and Tm are based on two independent samples of sizes u and m respectively,

hence cov(Tu,Tm) = 0, considering the population is sufficiently large so using large sample approx-
imations assumed in Section 4 and retaining terms upto the first order of approximations and also
assuming Cx = Cy = C0 (following Cochran (1977)), the expression for M(Tu) and M(Tm) are ob-
tained from equations (4.7) and (4.8) and hence the expression for mean square error of estimator T|p
is obtained as in equation (4.6). �

5. Choice of Optimal Weights

To find the optimization of the weight vector Wu = [wu1 wu2 · · · wup ]′, the mean square error M(Tu)
given in equation (4.7) is minimized subject to the condition 1′Wu = 1 using the method of Lagrange
multiplier explained as:
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To find the extrema using Lagrange multiplier technique, we define Lu as

Lu =W′
uKuWu − λu(1′Wu − 1), (5.1)

where 1 is a unit column vector of order p and λuis the Lagrange multiplier.
By differentiating equation (5.1) partially with respect to Wu and equating it to zero we have

∂Lu

∂Wu
=

∂

∂Wu

[
W′

uKuWu − λu(1′Wu − 1)
]
= 0.

This implies that, 2KuWu − λu1 = 0, which yields

Wu =
λu

2
K−1

u 1. (5.2)

Now pre-multiplying equation (5.2) by 1′, we get

λu

2
=

1
1′K−1

u 1
. (5.3)

Using equation (5.3) in equation (5.2), we obtain the optimal weight vector as

Wuopt. =
K−1

u

1′K−1
u 1

. (5.4)

In similar manners, the optimal of the weight Wm = [wm1 wm2 · · ·wmp ]′ is obtained by minimizing
M(Tm) subject to the constraint 1′Wm = 1 using the method of Lagrange multiplier, for this we define

Lm = (B)W′
mEWm +W′

mKmWm − λ(1′Wm − 1),

where λm is the Lagrange multiplier.
Now, differentiating Lm with respect to Wm and equating to 0, we get

Wmopt. =
K−1

m

1′K−1
m 1

. (5.5)

Then substituting the optimum values of Wu and Wm in equations (4.7) and (4.8) respectively, the
optimum mean square errors of the estimators are obtained as:

M(Tu)opt. =

(
1
u
− 1

N

)
1

1′K−1
u∗ 1

, (5.6)

M(Tm)opt. =

(
1
m
− 1

N

)
B1 +

(
1
n
− 1

N

)
1

1′K−1
m∗1

. (5.7)

6. Minimum Mean Square Error of the Proposed Estimator T|p

The mean square error of the proposed estimator T|p is given by

M(T|p)= φ2M(Tu)opt.+(1 − φ)2M(Tm)opt..
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Minimizing M(T|p) with respect to φ gives the optimum value of φ as

φopt. =
M(Tm)opt.

M(Tu)opt. + M(Tm)opt.
. (6.1)

Now substituting the above value of φopt. in equation (4.6), we obtain the optimum mean square error
of the estimators T|p as

M(T|p)∗opt. =
M(Tu)opt..M(Tm)opt.

M(Tu)opt.+M(Tm)opt.
. (6.2)

Further, substituting the optimum values of the mean square errors of the estimators given in equations
(5.6) and (5.7) in equations (6.1) and (6.2) respectively, the simplified values φopt. and M(T|p)∗opt. are
obtained as

φopt. =
µ[µC−(B1+C)]

[µ2C − µ(B1+C − A)−A]
, (6.3)

M(T|p)∗opt. =
1
n

[µD1−D2]
[µ2C − µD3−A]

, (6.4)

where A = 1/(1′K−1
u∗ 1), B1 = 2Ȳ2(1 − ρyx)C2

0, C = 1/(1′K−1
m∗1), D1 = AC, D2 = AB1 + AC,

D3= B1+C − A and µ is the fraction of the sample drawn afresh at the current (second) occasion.

7. Optimum Replacement Strategy for the Estimator T|p
The idea of longitudinal surveys is concerned with obtaining efficient estimates with minimal costs in
conducting the survey. It is technically convenient to maintain a high overlap between repeats of the
survey that provide advantages due to many sampled units location and use in the survey. Hence the
decision of the optimum value should be made (fractions of samples to be drawn fresh on the current
occasion) so that Ȳ may be estimated with maximum precision and minimum cost, we minimize the
mean square error M(T|p)∗opt. in equation (6.4) with respect to µ as:

∂
(
M

(
T|p

)∗
opt.

)
∂µ

= 0, ⇒ µ2G1 − 2µG2 +G3 = 0.

Thus the optimum value of µ so obtained is one of the two roots given by

µ̂ =
G2 ±

√
G2

2−G1G3

G1
, (7.1)

where G1 = CD1, G2 = CD2 and G3 = AD1 + D2D3.
The real value of µ̂ exist, iff G2

2 −G1G3 ≥ 0. For any situation, which satisfies this condition, two
real values of µ̂ may be possible, hence choose a value of µ̂ such that 0 ≤ µ̂ ≤ 1. All other values of
µ̂ are inadmissible. If both the real values of µ̂ are admissible, the lowest one will be the best choice
because it reduces the total cost of the survey. Substituting the admissible value of µ̂ say µT|p from
(7.1) in to the equation (6.4), we get the optimum value of the mean square error of the estimator T|p
with respect to φ as well as µ which, is given as

M
(
T|p

)∗∗
opt.
=

1
n

[
µT|p D1−D2

][
µ2

T|p
C − µT|p D3−A

] . (7.2)
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8. Efficiency with Increased Number of Auxiliary Variables

We know that increasing the number of auxiliary variables typically increases the precision of the
estimates. In this section we verify the property for the proposed estimator as under: Let T|p and T|q
be two proposed estimators based on p and q auxiliary variables respectively such that p < q, then
M(T|p) ≥ M(T|q), i.e.

M
(
T|p

)
−M

(
T|q

)
≥ 0 (8.1)

1
n

[
µApCp − Ap

(
B +Cp

)][
µ2Cp−µ

(
B +Cp + Ap

)
− A

p

]−1
n

[
µAqCq−Aq

(
B +Cq

)][
µ2Cq−µ

(
B +Cq + Aq

)
− A

q

] ≥ 0.

On simplification, we get

(
Ap − Aq

) (µ − 1)2

µCpCq+
ApAq

(
Cp−Cq

)(
Ap−Aq

) −µB
((

Cp−Cq

)
(µ − 1)−B

) ≥ 0.

This reduces to the condition (
Ap−Aq

)
≥ 0. (8.2)

From Section 6 above, we get

1
1′K−1

p 1
− 1

1′K−1
q 1
≥ 0

1′K−1
q 1 ≥ 1′K−1

p 1.

Following Rao (2006), the matrix Kq can be partitioned and can be written as

Kq =

(
Kp F
F′ G

)
,

where F, F′ and G are matrices deduced from Kq such that their order never exceeds q− p and always
greater than or equal to 1. Then,

K−1
q =

[
K−1

p + HJH′ −HJ
−JH′ J

]
, (8.3)

where J = (G − F′K−1
p F)−1 and H = K−1

p F (see Rao (2006) and Olkin (1958)).
Now rewriting 1′K−1

q 1 by putting the value of K−1
q from equation (8.3), we get

1′K−1
q 1 =

[
1p 1q−p

]′ [K−1
p + HJH′ −HJ
−JH′ J

] [
1p

1q−p

]
=

(
1′p

(
K−1

p + HJH′
)
− 1′q−p JH′ − 1′pHJ+1′q−p J

) [ 1p

1q−p

]
= 1′p(K−1

p + HJH′)1p−1′q−p JH′1p−1′pHJ1q−p+1′q−p J1q−p



Multivariate Rotation Design for Population Mean in Sampling on Successive Occasions 453

implies

1′K−1
q 1−1′p(K−1

p )1p = 1′p(HJH′)1p−1′q−p JH′1p−1′pHJ1q−p+1′q−p J1q−p,

1′K−1
q 1−1′p(K−1

p )1p =
[
1p 1q−p

]′ [HJH′ −HJ
−JH′ J

] [
1p

1q−p

]
,

1′K−1
q 1−1′p(K−1

p )1p = 1′
[

H
−I

]
J
[
H −I

]
1 ≥ 0.

The latter follows since J is positive definite so that R′JR ≥ 0 for all R, where R =
(
H −I

)
1.

Hence from equation (8.1), we have

M
(
T|p

)−M
(
T|q

) ≥ 0.

This leads to the result that utilizing more auxiliary variables provides more efficient estimates in
terms of mean square error for the proposed estimator.

9. Special Cases

Case 1
There are several instances where the p-auxiliary variates are mutually uncorrelated but are correlated
to study variates, for example in a survey of commercial products where the aim is to estimate the
number of persons reading newspaper. Then in that case the numbers of copies produced by different
newspaper companies are different and the number of copies produced by a particular newspaper com-
pany is uncorrelated to the number of copies produced by another newspaper, but both are correlated
to study variates, i.e., number of persons reading the newspaper. Similarly, the total seating capacity
of different airlines may be treated as auxiliary variates in a transportation survey where the aim is to
estimate the number of persons traveling by air per year. The seating capacity of different airlines is
different and they are mutually uncorrelated, but the information on this will contribute a lot in esti-
mation of the number of persons traveling by air. Hence, for modelling such type of situations where
the p-auxiliary variates are mutually uncorrelated, i.e. ρziz j = 0 ∀ i , j = 1, 2, . . . , p, the proposed
multivariate exponential ratio type estimator is applicable and the optimum value of µ say µ0 and the
optimum value of the mean square error of the estimator T|p with respect to φ as well as µ0 is given by

µ̂0 =
G0

2 ±
√

G02

2 −G0
1G0

3

G0
1

(9.1)

and

M
(
T|p

)∗∗
opt.
=

1
n

[
µ0

T|p
D0

1−D0
2

]
[
µ02

T|p
C0−µ0

T|p
D0

3−A0
] , (9.2)

where

G0
1 = C0D0

1, G0
2 = C0D0

2, G0
3 = A0D0

1 + D0
2D0

3, A0 =
1

1′S−1
u∗ 1

, C0 =
1

1′S−1
m∗1

,

B0
1 = 2Ȳ2(1 − ρyx)C2

0, D0
1 = A0C0, D0

2 = A0B0
1 + A0C0, D0

3 = B0
1 +C0 − A0,
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where

Su∗ =


su11 su12 . . . su1p

su21 su22 . . . su2p
...

...
...

...
sup1 sup2 . . . supp


p×p

and Sm∗ =


sm11 sm12 . . . sm1p

sm21 sm22 . . . sm2p
...

...
...

...
smp1 smp2 . . . smpp


p×p

,

where

suii = Ȳ2
(
C2

0 +
1
4

C2
zi
− ρyziC0Czi

)
, sui j = Ȳ2

(
C2

0 −
1
2
ρyziC0Czi −

1
2
ρyz jC0Cz j

)
,

smii = Ȳ2
(
C2

0(2ρyx − 1) − ρyziC0Czi +
1
4

C2
zi

)
, smi j = Ȳ2

(
C2

0(2ρyx − 1) − 1
2
ρyziC0Czi −

1
2
ρyz jC0Cz j

)
,

∀ i , j = 1, 2, 3, . . . , p.

Case 2
The p-auxiliary variates are mutually correlated i.e. ρzi z j , 0 ∀ i , j = 1, 2, . . . , p. In this case if there
is high correlation between p-auxiliary variates, then such a problem can be addressed as a problem
of multicollinearity in survey sampling.

10. Efficiency Comparison

To examine the performance of the proposed estimator with some recent estimators due to Singh
(2005) and Singh and Priyanka (2008) in successive sampling, some assumptions have been consid-
ered for the proposed estimator to discuss the properties of estimators as estimators proposed by Singh
(2005) and Singh and Priyanka (2008).

Following Artes Rodriguez and Gracia Luengo (2005), Olkin (1958), Raj (1965) and Singh et al.
(2011) we consider C0 = Czi ; ∀ i = 1, 2, 3, . . . , p approximately and hence, the optimum value of µ
say µ̂∗ and optimum value of mean square error M(T|p)∗∗opt. of the proposed estimator T|p reduces to

µ̂∗ =
G∗2±

√
G∗22 −G∗1G∗3
G∗1

, (10.1)

M(T|p)∗∗opt. =
1
n

[
µ∗T|p D∗1−D∗2

]
[
µ∗

2

T|p
C∗−µ∗T|p D∗3−A∗

] , (10.2)

where

G∗1 = C∗D∗1, G∗2 = C∗D∗2, G∗3= A∗D∗1 + D∗2D∗3, A∗ =
1

1H−1
u∗ 1

, C∗ =
1

1H−1
m∗1

,

B∗1 = 2(1 − ρyx)S 2
y , D∗1 = A∗C∗, D∗2 = A∗B∗1+A∗C∗, D∗3 = B∗1 +C∗−A∗,

where

Hu∗ =


hu11 hu12 . . . hu1p

hu21 hu22 . . . hu2p
...

...
. . .

...
hup1 hup2 . . . hupp


p×p

and Hm∗ =


hm11 hm12 . . . hm1p

hm21 hm22 . . . hm2p
...

...
. . .

...
hmp1 hmp2 . . . hmpp


p×p

,
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where

huii =

(
5
4
− ρyzi

)
S 2

y , hui j =

(
1−1

2
ρyzi
− 1

2
ρyz j
+

1
4
ρziz j

)
S 2

y ,

hmii =

(
2ρyx − ρyzi

− 3
4

)
S 2

y , hmi j =

(
2ρyx −

1
2
ρyzi
− 1

2
ρyz j
+

1
4
ρziz j−1

)
S 2

y ,

∀ i , j = 1, 2, 3, . . . , p.

10.1. Comparison of the proposed estimator T|p with respect to estimator TS due to
Singh (2005)

The estimator proposed by Singh (2005) is given as

TS = ψ
ȳu

z̄u
Z̄ + (1 − ψ)

ȳm

x̄m

x̄n

z̄n
Z̄, (10.3)

and the optimum mean square error of this estimator TS is given by

M(TS )opt. =
[α2

1 + α1α2µS ]S 2
y

n[α1 + α2µ
2
S ]

with α1 = 2(1 − ρyz), α2 = 2(ρyz − ρyx) and µS = −(1 − ρyz) ±
√

(1 − ρyz)(1 − ρyx)/(ρyz − ρyx).
Hence, the percent relative efficiency of the proposed estimator with respect to TS is given as

ES
T|p =

M[Ts]opt.

M(T|p)∗∗opt.
× 100. (10.4)

10.2. Comparison of the proposed estimator T|p with respect to estimator TSP due to
Singh and Priyanka (2008)

The proposed estimator T|p at optimum condition is also compared with respect to the estimator TSP

due to Singh and Priyanka (2008) given as

TSP = ξ
[
ȳu + βyz

(
Z̄ − z̄u

)]
+ (1 − ξ)

[
ȳ∗m + βyx

(
x̄∗n − x̄∗m

)]
, (10.5)

where ȳ∗m = ȳm+βyz(Z̄− z̄m), x̄∗n = x̄n+βxz(Z̄− z̄n), x̄∗m = x̄m+βxz(Z̄− z̄m), βyz and βxz are the population
regression coefficients of y on z and x on z respectively and ξ is constant so as to minimize the variance
of the estimator TSP.

The optimum variance of estimator TSP is given as

V (TSP)∗opt. =
κ
[
κ + µSPχ

][
κ + µ2

SPχ
] S 2

y

n
,

where κ = 1 − ρ2
yz, χ = 2ρ2

yzρyx − ρ2
yx(1 + ρ2

yz) and µSP = {−κ ±
√
κ(κ + χ)}/χ.

Hence, the percent relative efficiency ESP
T|p

for (p = 1, 2, 3, . . .) of the estimator T|p (under their
respective optimum conditions) with respect to TSP is given by

ESP
T|p =

V [TSP]∗opt.

M
(
T|p

)∗∗
opt.

× 100, for p = 1, 2, 3, . . . . (10.6)
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Table 1: Empirical comparison of the proposed estimator T |p (p = 1, 2 and 3) with respect to the estimators TS

and TSP respectively at their optimum conditions for considered population

p = 1 p = 2 p = 3
µ∗1 = 0.5355 µ∗2 = 0.5196 µ∗3= 0.5137

ES
T|p

µS = 0.5502 109.55 120.77 125.17

ESP
T|p

µSP = 0.5496 ∗∗ 101.44 105.14

∗∗ denote estimator T|p=1 does not perform better than TSP in terms of efficiency.

Table 2: Monte Carlo Simulation results when the proposed estimator T |p=1 is compared to TS and TSP

respectively (considering ψ = ξ)

φ
ψ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 E1(S ) 1349.90 5895.10 12296.00 17324.00 36619.00 57157.00 72197.00 84832.00 84170.00
E1(SP) 104.42 102.05 127.52 171.80 262.54 375.88 520.91 638.86 867.55

0.3 E1(S ) 1168.90 4741.70 11796.00 16766.00 32572.00 45474.00 61039.00 81957.00 97409.00
E1(SP) ∗∗ ∗∗ 113.58 159.70 237.69 329.08 469.05 577.94 764.94

0.5 E1(S ) 894.80 3399.70 8454.40 12852.00 22913.00 30904.00 41579.00 60708.00 70099.00
E1(SP) ∗∗ ∗∗ ∗∗ 113.93 167.23 231.62 323.22 410.61 540.09

0.7 E1(S ) 608.00 2258.00 5620.80 8907.00 14926.00 19794.00 27410.00 40345.00 46610.00
E1(SP) ∗∗ ∗∗ ∗∗ ∗∗ 109.21 153.80 211.71 272.91 358.30

0.9 E1(S ) 413.45 1493.10 3817.90 5946.80 10156.00 13715.00 18796.00 26496.00 31819.00
E1(SP) ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 105.43 141.45 184.93 242.63

∗∗ denotes estimator T|p=1 does not perform better than TSP in terms of efficiency.

11. Empirical Illustrations and Monte Carlo Simulation

Population Source (Free access to the data by Statistical Abstracts of the United States)

To conduct the empirical study, the population of total electric consumption in different states of
United States has been considered.

To conduct the numerical illustration we considered the case of three auxiliary information (i.e.
p = 3) stable over time and available at both occasions. The population comprise of N = 51 states of
the United States. Let

yi: The total energy consumption during 2007 in the ith state of U.S.

xi: The total energy consumption during 2002 in the ith state of U.S.

z1i: The total energy consumption during 2001 in the ith state of U.S.

z2i: The total energy consumption during 2000 in the ith state of U.S.

z3i: The total energy consumption during 1999 in the ith state of U.S.

For the considered population, the values of µ∗T|p (p = 1, 2 and 3) defined in equation (10.2) and
percent relative efficiencies ES

T|p
and ESP

T|p
defined in equation (10.4) and (10.6) of T|p (p = 1, 2 and 3)

with respect to TS and TSP have been computed (Table 2).

11.1. Simulation algorithm

(i) Choose 5000 samples of size n = 20 using simple random sampling without replacement on first
occasions for both the study and auxiliary variables.
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Table 3: Monte Carlo Simulation results when the proposed estimator T |p=2 are compared to TS and TSP

respectively (considering ψ = ξ)

φ
ψ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 E2(S ) 1335.20 5940.60 12400.00 17376.00 36883.00 57438.00 73062.00 85114.00 84732.00
E2(SP) 104.44 102.84 128.60 172.31 264.43 377.72 527.15 640.98 873.34

0.3 E2(S ) 1178.30 11795.10 11935.00 16892.00 32827.00 45857.00 61624.00 82646.00 98297.00
E2(SP) ∗∗ ∗∗ 114.92 160.90 239.55 331.85 473.55 582.80 771.92

0.5 E2(S ) 902.63 3431.40 8553.50 12956.00 23109.00 31143.00 41964.00 61237.00 70719.00
E2(SP) ∗∗ ∗∗ ∗∗ 114.85 168.66 233.41 326.21 414.19 544.87

0.7 E2(S ) 612.36 2276.40 5673.30 8977.40 15037.00 19933.00 27637.00 40674.00 46957.00
E2(SP) ∗∗ ∗∗ ∗∗ ∗∗ 110.02 154.88 213.46 275.13 360.96

0.9 E2(S ) 416.00 1502.60 3846.80 5988.20 10221.00 13801.00 18936.00 26671.00 32009.00
E2(SP) ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 106.09 142.50 186.15 244.08

∗∗ denotes estimator T|p=2 does not perform better than TSP in terms of efficiency.

Table 4: Monte Carlo Simulation results when the proposed estimator T |p=3 are compared to TS and TSP

respectively (considering ψ = ξ)

φ
ψ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 E3(S ) 1407.70 6252.00 12967.00 18284.00 38857.00 61313.00 76382.00 89262.00 88716.00
E3(SP) 110.12 108.23 134.48 181.31 278.58 403.21 551.10 672.22 914.40

0.3 E3(S ) 1222.20 5606.40 12300.00 17513.00 34076.00 47645.00 63630.00 85846.00 10116.00
E3(SP) 104.40 104.34 118.44 166.82 248.67 344.79 488.95 605.36 794.41

0.5 E3(S ) 934.23 3549.50 8812.80 13413.00 23967.00 32399.00 43198.00 63448.00 73073.00
E3(SP) ∗∗ ∗∗ ∗∗ 118.90 128.23 242.82 335.81 429.14 563.01

0.7 E3(S ) 638.63 2371.60 5891.40 9397.20 15675.00 20776.00 28770.00 42331.00 490.21
E3(SP) ∗∗ ∗∗ ∗∗ ∗∗ 114.69 161.42 222.22 286.35 376.83

0.9 E3(S ) 436.36 1577.90 4023.40 6288.20 10711.00 14474.00 19833.00 27952.00 33593.00
E3(SP) ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ 111.27 149.26 195.09 256.16

∗∗ denotes estimator T|p=3 does not perform better than TSP in terms of efficiency.

(ii) Calculate sample mean x̄n|k, z̄1n|k , z̄2n|k and z̄3n|k for k = 1, 2, . . . , 5000.

(iii) Retain m = 17 units out of each n = 20 sample units of the study and auxiliary variables at the
first occasion.

(iv) Calculate sample mean x̄m|k, z̄1m|k , z2m|k and z̄3m|k for k = 1, 2, . . . , 5000.

(v) Select u = 3 units using simple random sampling without replacement from N − n = 31 units of
the population for study and auxiliary variables at the second (current) occasion.

(vi) Calculate sample mean ȳu|k, ȳm|k, z̄1u|k , z2u|k and z̄3u|k for k = 1, 2, . . . , 5000.

(vii) Iterate the parameter φ from 0.1 to 0.9 with a step of 0.1.

(viii) Iterate ψ from 0.1 to 0.9 with a step of 0.1 within (vii).

(ix) Calculate the percent relative efficiencies of the proposed estimator T|p(p = 1, 2 and 3) with the
case p = 1, p = 2 and p = 3 (i.e. T|p=1, T|p=2 and T|p=3) with respect to estimator due to Singh
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Table 5: For p = 1

ρyx
ρyz1 0.5 0.6 0.7

µ∗1 µS µSP ES
T|p

ESP
T|p

µ∗1 µS µSP ES
T|p

ESP
T|p

µ∗1 µS µSP ES
T|p

ESP
T|p

0.1 0.51 0.57 0.53 141.36 ∗∗ 0.54 0.60 0.55 142.23 ∗∗ 0.58 0.63 0.58 143.34 ∗∗
0.3 0.49 0.54 0.52 134.21 ∗∗ 0.52 0.56 0.54 134.93 ∗∗ 0.55 0.60 0.57 135.86 ∗∗
0.6 0.44 0.47 0.49 116.35 ∗∗ 0.47 0.50 0.51 116.69 ∗∗ 0.51 0.53 0.53 117.12 ∗∗
∗∗ denotes estimator T|p=1 does not perform better than TSP in terms of efficiency.

Table 6: For p = 2 and ρz1z2 = 0

ρyx
ρyz1 ρyz2 0.5 0.6 0.7

µ∗1 µS µSP ES
T|p

ESP
T|p

µ∗1 µS µSP ES
T|p

ESP
T|p

µ∗1 µS µSP ES
T|p

ESP
T|p

0.3 0.48 0.55 0.53 158.92 100.00 0.51 0.58 0.55 160.26 102.09 0.54 0.62 0.57 161.99 104.06
0.2 0.4 0.47 0.55 0.53 168.30 105.91 0.50 0.58 0.55 169.91 108.23 0.53 0.62 0.57 171.98 110.48

0.5 0.46 0.55 0.53 180.81 113.78 0.48 0.58 0.55 182.79 116.44 0.52 0.62 0.57 185.35 119.07
0.3 0.47 0.54 0.52 149.03 ∗∗ 0.50 0.56 0.54 150.13 101.65 0.53 0.60 0.57 151.54 103.74

0.3 0.4 0.46 0.54 0.52 156.62 104.62 0.49 0.56 0.54 158.10 107.05 0.53 060 0.57 159.79 109.38
0.5 0.45 0.54 0.52 167.23 111.58 0.48 0.56 0.54 168.83 114.32 0.52 0.60 0.57 170.91 117.00
0.3 0.46 0.52 0.52 139.32 ∗∗ 0.49 0.55 0.53 140.19 100.22 0.53 0.58 0.56 141.30 102.44

0.4 0.4 0.45 0.52 0.52 145.60 102.27 0.48 0.55 0.53 146.63 104.83 0.52 0.58 0.56 147.95 107.27
0.5 0.45 0.52 0.52 154.20 108.31 0.47 0.55 0.53 155.46 111.14 0.51 0.58 0.56 157.09 113.89

∗∗ denotes estimator T|p=2 does not perform better than TSP in terms of efficiency.

Table 7: For p = 2 and ρz1z2 , 0

ρyz1
ρyx

= ρz1z2
ρyz2 0.5 0.6 0.7

µ∗1 µS µSP ES
T|p

ESP
T|p

µ∗1 µS µSP ES
T|p

ESP
T|p

µ∗1 µS µSP ES
T|p

ESP
T|p

0.2 0.4 0.47 0.55 0.53 162.28 104.01 0.50 0.58 0.58 166.81 106.26 0.53 0.62 0.57 168.77 108.41
0.5 0.46 0.55 0.53 178.37 112.24 0.49 0.58 0.58 180.27 114.83 0.52 0.62 0.57 182.73 117.38

0.3 0.4 0.47 0.54 0.52 151.70 101.22 0.50 0.56 0.54 152.87 103.51 0.53 0.60 0.57 154.38 105.68
0.5 0.46 0.54 0.52 162.40 108.36 0.48 0.56 0.54 163.86 110.95 0.52 0.60 0.57 165.75 113.47

0.4 0.4 0.46 0.52 0.52 138.66 ∗∗ 0.49 0.55 0.53 139.51 ∗∗ 0.53 0.58 0.56 140.60 101.94
0.5 0.45 0.52 0.52 146.88 103.13 0.48 0.55 0.53 147.89 100.73 0.52 0.58 0.56 149.26 108.21

∗∗ denotes estimator T|p=2 does not perform better than TSP in terms of efficiency.

(2005) and Singh and Priyanka (2008) as

Ep(S ) =

∑5000
k=1

[
TS |k − Ȳ

]2

∑5000
k=1

[
T|p|k − Ȳ

]2 × 100 and Ep(S P) =

∑5000
k=1

[
TS P|k − Ȳ

]2

∑5000
k=1

[
T|p|k − Ȳ

]2 × 100,

for k = 1, 2, . . . , 5000.

11.2. Performance of proposed estimators for various choices of correlation coefficients

To validate the applicability and performance of the proposed estimator, T|p (for p = 1, 2 and 3)
has been compared with Singh (2005) and Singh and Priyanka (2008) at their respective optimum
conditions for various combinations of correlation coefficients (Tables 5–7).
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Table 8: For p = 3 and ρziz j = 0 ∀ i , j = 1, 2, 3

ρyx ρyz1 ρyz2 ρyz3 µ∗3 µS µSP ES
T|p

ES
T|p

0.6 0.5 0.6 0.7 0.45 0.52 0.52 152.12 114.09
0.7 0.5 0.6 0.7 0.49 0.56 0.55 153.67 117.30
0.7 0.4 0.6 0.5 0.50 0.58 0.56 169.65 122.99

Table 9: For p = 3 and ρziz j , 0 ∀ i , j = 1, 2, 3

ρyx ρyz1 ρyz2 ρyz3 ρz1z2 ρz1z3 ρz2z3 µ∗3 µS µSP ES
T|p

ES
T|p

0.6 0.2 0.5 0.3 0.5 0.5 0.4 0.46 0.55 0.53 177.71 111.83
0.7 0.4 0.7 0.6 0.3 0.3 0.4 0.48 0.58 0.56 182.62 132.40
0.7 0.3 0.7 0.5 0.3 0.4 0.2 0.48 0.60 0.57 206.51 141.37

Figure 1: Mutual comparison of proposed estimator T |p=1, T |p=2 and T |p=3 with respect to the estimator TS for
ψ = 0.1.

12. Mutual Comparison of the Estimators T|p (p = 1, 2 and 3)

The performances of the estimator T|p (p = 1, 2 and 3) have been elaborated empirically as well as
through simulation studies in the above sections and obtained results (Table 1–9). In this section the
mutual comparison of the estimators for the cases when p = 1, p = 2 and p = 3 has been elaborated
graphically (Figures 1 and 2).

13. Rendition of Results

13.1. Results based on an empirical study for the considered population

(1) Table 1 indicates that the optimum values of µ∗1, µ∗2 and µ∗3 exist for the considered population and
µ∗3 < µ∗2 < µ∗1 < µSP < µS . This indicates that a smaller fraction of fresh sample is required when
more numbers of auxiliary variables is used and this fraction is lesser than the procedures given
by Singh (2005) and Singh and Priyanka (2008). Hence, the total cost of the survey is reduced.

(2) The value of ET |p=3 > ET |p=2 > ET |p=1 and justifies that efficiency increases highly when more
numbers of auxiliary variates are considered and it results peachy in terms of cost as it decreases
on increasing the number of auxiliary variables which also abide by Sukhatme (1984).

(3) Table 1 shows that the proposed estimator T|p is more efficient than the estimator TS for all the
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Figure 2: Mutual comparison of proposed estimator T |p=1, T |p=2 and T |p=3 with respect to the estimator TSP for
ψ = 0.6.

considered values of p (i.e. p = 1, 2 and 3) and T|p is better than the estimator TSP except for
p = 1 as the number of auxiliary variables is increased, efficiency increases considerably, hence
the estimator T|p is superior than the estimator TSP due to Singh and Priyanka (2008) for p = 2
onwards in terms of efficiency but in terms of cost T|p is better than TS and TSP for every value
of p.

13.2. Results based on simulation study

(1) From simulation results in Tables 2–4 we observe that if less attention is given to φ (i.e. more
attention is given to the estimator used at the first occasion) then the proposed estimators T|p
(p = 1, 2 and 3) are superior than the estimator TS and abide by the theory while retaining higher
weights for ψ (i.e. more attention is given to the estimator used at the current occasion). This
makes the proposed estimators T|p (p = 1, 2 and 3) more effective than the estimator TS due to
Singh (2005).

(2) From Tables 2–4 it is vindicated that if less emphasis is supplied to φ (i.e. more attention is given
to the estimator used at the first occasion) then the proposed estimators T|p (p = 1, 2 and 3) are
better than the estimator TSP and are in accordance with the theory while selecting a greater value
for ξ (i.e. more attention is given to the estimator used at the current occasion). This makes the
proposed estimators T|p (p = 1, 2 and 3) more effective than the estimator TSP due to Singh and
Priyanka (2008). We increase the value of φ, and the efficiency gets reduced for all choices of ξ.

13.3. Results extracted from general scenario i.e. by considering different choices of
correlation coefficients

(1) Table 5 indicates that for a fixed value of correlation coefficient between the study variable at two
occasions, if the correlation between the study and auxiliary variates increases then the proposed
estimator T|p for p = 1 is efficient over the estimator TS in terms of precision as well as cost but
it is efficient over the estimator TSP only in terms of cost. If the contribution of auxiliary variable
increases the fraction of sample to be drawn on current occasion decreases.

(2) Tables 6–9 show that the proposed estimator T|p for p = 2 and p = 3 is efficient over the estimators
TS and TSP even for very low correlation between study variable and auxiliary variable, which is a
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positive point whether the auxiliary information utilized are mutually correlated or uncorrelated.
The fraction of samples to be drawn fresh at the current occasion is least for the proposed estimator
than the estimators due to Singh (2005) and Singh and Priyanka (2008); in addition, it reduces
more as the contribution of auxiliary information increases.

14. Conclusion

The articulation of two structures (i.e. exponential ratio type and chain type ratio to exponential ratio
type) is beneficial as summed with multi-auxiliary information which is stable in nature, pronto and
does not to be highly correlated to study variables over the two occasions.The empirical study for
the considered population, simulation study and the study by taking different choices of correlation
coefficient suggest that the proposed estimator provides the lowest fraction of fresh sample drawn
on the current occasion compared to well-known estimators available in the literature to estimate
population mean, resulting in lowering the total cost of the survey. The proposed estimator T|p is
better than the estimator TSP for p = 1 in terms of cost only. As we increase the number of auxiliary
variables, the proposed estimator becomes better than the estimator TSP in terms of efficiency and
cost. Hence, the proposed estimator may be recommended for its practical use by survey statisticians.
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