• Title/Summary/Keyword: Optimum mixing rate

Search Result 151, Processing Time 0.029 seconds

Shape Optimization of A Twist Mixing Vane in Nuclear Fuel Assembly (핵연료 봉다발내 비틀린 혼합날개의 형상최적설계)

  • Jung, Sang-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.7-13
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of inverse of heat transfer rate and friction loss. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

SHAPE OPTIMIZATION OF A Y-MIXING VANE IN NUCLEAR FUEL ASSEMBLY (핵연료 봉다발내 Y 혼합날개의 형상최적설계)

  • Jung, S.H.;Kim, K.Y.;Kim, K.H.;Park, S.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane taken tolerance into consideration by using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of pressure drop. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

Determination of Optimal Mixing Ratio of Phosphorescent Pigment to Develop Phosphorescent Paint for Road Line Marking (도로의 축광차선 도료 개발을 위한 축광안료 최적 배합비 산정에 관한 연구)

  • Lee, Yong Mun;Kim, Sang Tae;Kim, Heung Rae
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2015
  • PURPOSES : This study was conducted to derive the optimum mixing ratio of phosphorescent pigment for the development of phosphorescent line marking. METHODS: In this study, we utilized a literature review and case study methodology, to describe the domestic and foreign state of practice for the production and mixing of phosphorescent pigment for use in line marking. The optimal mixing ratio was derived by comparing the reduction in luminance over time for the various phosphorescent pigment mixing ratios identified in the literature. In addition, performance and construction characteristics were analyzed using field testing techniques. RESULTS : The results were as follows: 1) the results of the luminance performance standards tests showed that all of the phosphorescence test specimens satisfied the phosphorescent fire protection standard. As the phosphorescent pigment mixing ratio increased, the luminance value increased, 2) the luminance reduction rate was minimum at the mixing ratio of 50%. However, when compared to a mixing ratio 40%, a small difference was recorded, the luminance reduction rate from the mixing ratio of 40% is judged as being converged. Therefore, in view of the economic efficiency, it was determined that the optimal mixing ratio was 40%, 3) as a result of construction on the field, a mixing ratio of 40% was found to have a higher luminance value than the general line marking for up to three hours after sunset, 4) it was found that the phosphorescent line markings without glass beads spraying had a higher luminance value than the phosphorescent line markings with glass beads spraying. CONCLUSIONS : Through the results of the basic experiments of the line markings obtained by blending a phosphorescent pigment, the results could be applied to play an important role in the development of phosphorescent line marking paint technology and in establishing application planning for on-site construction characteristics.

LES Method Modeling and Fabrication of Al-TiB2 Composite by In-situ Melt Mixing Process (In-situ 용탕혼합 합성법에 의한 Al-TiB2 복합재료의 LES 기법 모델링 및 제조)

  • Park, Jungsu;Kim, Jonghoon;Ha, Manyoung;Park, Bongkyu;Park, Yongho;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.382-389
    • /
    • 2008
  • To manufacture Al MMCs, in-situ melt mixing process is used because it is free from contamination, and it makes reinforcements homogeneously dispersed. Large eddy simulation method is used to find the optimum melt mixing condition. At the Re 3000, the most suitable mixing is occurred between Al-Ti and Al- B melts. The in-situ formed $TiB_2$ particles has the size varying from 40 nm to 130 nm, due to the increase of cooling rate, and exhibits a homogeneous dispersion. And the interface between reinforcement and matrix is clean. Both hardness and Young's modulus of this composite are improved with increasing the cooling rate.

Determining Heavy Metal (loid) Stabilization Materials and Optimum Mixing Ratio: Aqueous Batch test

  • Oh, Seung Min;Oh, Se Jin;Kim, Sung Chul;Lee, Sang Hwan;Ok, Yong Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.540-546
    • /
    • 2014
  • Acid mine drainage sludge (AMDS) has been classified as mine waste and generally deposited in land. For this reason, studies have been conducted to examine the possibility of recycling AMDS as an amendment for heavy metal stabilization in soil. The main objective of this study was to evaluate heavy metal stabilization efficiency of AMDS comparing with the widely used lime stone. Also, optimum mixing ratio was evaluated for enhancing heavy metal stabilization. AMDS and limestone were mixed at the ratio of 0:100, 25:75, 50:50, 75:25, and 100:0 with five different heavy metal solutions ($100mg\;L^{-1}$ of $NaAsO_2$, $CdCl_2$, $CuCl_2$, $Pb(NO_3)_2$, and $ZnSO_4{\cdot}7H_2O$). The amendments were added at a rate of 3% (w/v). In order to determine the stabilization kinetics, samples were collected at different reaction time of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 minutes. The heavy metal stabilization by AMDS was faster and higher than those of limestone for all examined heavy metals. While limestone showed only 20% of arsenic (As) stabilization after 1,024 minutes, 96% of As was stabilized within 1 minute by AMDS. The highest effect on the stabilization of heavy metal (loid) was observed, when the two amendments were mixed at a ratio of 1:1. These results indicated that AMDS can be effectively used for heavy metal stabilization in soil, especially for As, and the optimum mixing ratio of AMDS and lime was 1:1 at a rate of 3% (w/v).

Immobilized ${\beta}-Cyclodextrin$ as a Simple and Recyclable Method for Cholesterol Removal in Milk

  • Kwak, H.-S.;Kim, S.-H.;Kim, J.-H.;Choi, H.-J.;Kang, J.
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.873-877
    • /
    • 2004
  • This study was designed to determine the optimum conditions of three different factors (mixing time, mixing temperature, and tube size) in reduction of cholesterol in milk using immobilized $\beta$-CD beads. Immobilized $\beta$-CD glass beads were prepared at different conditions of silaniza-tion and $\beta$-CD immobilization reactions. In result, the glass beads (diameter 1 mm) at 20 mM 3-isocyanatopropyltriethoxysilane and 30 mM $\beta$-CD without base showed the highest choles-terol removal rate as 41%. Using above immobilized $\beta$-CD glass beads, the cholesterol removal rate was 40.2% with 6 h of mixing time in 7 mm diameter tube at $10^{\circ}C$. After choles-terol removal from milk, the glass beads were washed for cholesterol dissociation and reused. In recycling study, the cholesterol removal rate was 41%, which was mostly same as that using new glass beads. These results indicated that cholesterol removal rate was about 40% with $\beta$-CD immobilized glass beads, however, the recycling efficiency was almost 100%.

The Explosion-proof Performance of HPFRCC According to Fiber Combination and Mixing Ratio (섬유조합 및 혼입율 변화에 따른 HPFRCC의 방폭성능)

  • Lee, Jea-Hyeon;Lee, Jong-Tae;Jung, Woung-Seon;Jo, Sung-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.88-89
    • /
    • 2017
  • Due to the increase in the usage of explosive materials and terrorism, the interest towards the superior explosion protective HPFRCC has risen. In existing research, the optimum ratio for solving the problematic problems such as the optimum fiber incorporation rate and the self-shrinkage crack of HPFRCC had been derived. However, there had been few or even no research upon how effective HPFRCC would perform protective explosion-proof in actual explosion. Therefore, this research compared the explosion-proof performance of HPFRCC according to fiber commination and mixing ratio. As a result, the combination of steel fiber and organic fiber showed excellent flow and strength, and it also improved the explosion resistance.

  • PDF

Characteristics of Dual Transverse Injection in Supersonic Flow Fields I-Mixing Characteristics (초음속 유동장 내 이중 수직분사의 특성에 관한 연구 I-혼합특성)

  • Shin, Hun-Bum;Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.53-60
    • /
    • 2002
  • Based on the analyses of the single transverse injection in supersonic flow fields, the mixing characteristics of dual transverse injection of hydrogen in supersonic air flow are studied with computational methods. Three-dimensional Navier -Stokes and the k-$\omega$ SST turbulence model were used. A parametric study is conducted with the variation of the distance between two injectors. The flow patterns and the mixing characteristics of two injection flows are very different from each other, and the flow patterns and the mixing characteristics of the rear injection flow are strongly influenced by those of the first injection flow. The increase of the distance between two injectors up to a specific distance results in the increase of mixing rate and penetration of fuel. However, the increase of the distance over the specific distance results in the decrease of mixing rate and penetration of fuel. From the results it can be stated that there exists a distance between two injectors for optimum mixing characteristics.

Manufacturing Water Permeable Block Using Loess, Clay and Waste Sewage Sludge (황토, 점토 및 하수처리오니를 이용한 투수블록 제조)

  • Kim, Jong Dae;Han, Sang Moo;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.476-481
    • /
    • 2015
  • Water permeable block was manufactured using waste sewage sludge, loess and clay for the purpose of recycling waste sludge due to the prohibition of waste sludge ocean dumping. Experiments for determining optimum mixing ratio was conducted by changing sludge content in water permeable block as 5~20%. In respect of compressive strength, $1,600N/cm^2$ ($163.3kg/cm^2$) was obtained when the mixing ratio of sludge : loess : clay were maintained by 5% : 65% : 30%, 10% : 65% : 25% and 15% : 65% : 20%, respectively. These mean that relatively high compressive strength can be obtained when the sludge content is maintained 5, 10, 15% at the 65% of loess content. In terms of water permeability and absorption rate, the higher values can be obtained as the sludge content increases. The optimum mixing ratio of sludge : loess : clay came out to be 15% : 65% : 20% when water permeability, absorption and strength were considered altogether, which matches the result observed by an electron microscope. The heavy metal leaching test result of the prepared permeable block appeared to satisfy the environmental standard in the content of Cd, Cu, Pb and As.

Triboelectrostatic Separation System for Separation of PVC and PS Materials Using Fluidized Bed Tribocharger

  • Lee, Jae-Keun;Shin, Jin-Hyouk;Hwang, Yoo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1336-1345
    • /
    • 2002
  • A triboelectrostatic separation system using a fluidized bed tribocharger for the removal of PVC material in the mixture of PVC/PS plastics is designed and evaluated as a function of electric field strength, air flow rate, and the mixing ratio of two-component mixed plastics. It consists of a fluidized-bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PS particles can be imparted negative and positive surface charges, respectively, due to the difference in the work function values of plastics suspended in the fluidized-bed tribocharger, and can be separated by passing them through an external electric field. Experimental results show that separation efficiency is strongly dependent on the electric Deld strength and particle mixing ratio. In the optimum conditions of 150 Ipm air flow rate and 2.6 kV/cm electric field strength a highly concentrated PVC (99.1%) can be recovered with a yield of more than 99.2% from the mixture of PVC and PS materials for a single stage of processing.