LES Method Modeling and Fabrication of Al-TiB2 Composite by In-situ Melt Mixing Process

In-situ 용탕혼합 합성법에 의한 Al-TiB2 복합재료의 LES 기법 모델링 및 제조

  • Park, Jungsu (School of Material Science and Engineering, Pusan National University) ;
  • Kim, Jonghoon (School of Material Science and Engineering, Pusan National University) ;
  • Ha, Manyoung (Department of Mechanical Engineering, Pusan National University) ;
  • Park, Bongkyu (School of Material Science and Engineering, Pusan National University) ;
  • Park, Yongho (School of Material Science and Engineering, Pusan National University) ;
  • Park, Ikmin (School of Material Science and Engineering, Pusan National University)
  • Received : 2008.02.26
  • Published : 2008.06.22

Abstract

To manufacture Al MMCs, in-situ melt mixing process is used because it is free from contamination, and it makes reinforcements homogeneously dispersed. Large eddy simulation method is used to find the optimum melt mixing condition. At the Re 3000, the most suitable mixing is occurred between Al-Ti and Al- B melts. The in-situ formed $TiB_2$ particles has the size varying from 40 nm to 130 nm, due to the increase of cooling rate, and exhibits a homogeneous dispersion. And the interface between reinforcement and matrix is clean. Both hardness and Young's modulus of this composite are improved with increasing the cooling rate.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. D. H. Song, H. S. Choi, I. D. Choi, I. M. Park and K. M. Cho, J. Kor. Inst. Met. & Mater. 38, 785 (2000)
  2. B. Q. Han and T. G. Langdon, Mater. Sci. Eng. A 410, 430 (2005)
  3. E. L. Zhang, S. Y. Zeng and B. Yang, J. Mater. Sci. Technol. 14, 255 (1998)
  4. I. H. Song, D. K. Kim, Y. D. Hahn and H. D. Kim, Met. & Mater. Int. 10, 301 (2004)
  5. H. C. Park, S. C. Kang, H. K. Kwon and Y. S. Kim, J. Kor. Inst. Met. & Mater. 40, 432 (2002)
  6. S. C. Tjong and G. S. Wang, Adv. Eng. Mater. 6, 964 (2004) https://doi.org/10.1002/adem.200400099
  7. Yijie Zhang, Naiheng Ma and Haowei Wang, Materials Letters 61, 3273 (2007) https://doi.org/10.1016/j.matlet.2006.11.052
  8. M. C. Gui, J. M. Han and P. Y. Li, Mater. Sci. Technol. 20, 765 (2004) https://doi.org/10.1179/026708304225017319
  9. B. G. Park, S. H. Ko, Y. H. Park and J. H. Lee, Intermetallics 14, 660 (2006) https://doi.org/10.1016/j.intermet.2005.10.007
  10. J. H. Kim, J. H. Yun, Y. H. Park, K. M. Cho, I. D. Choi and I. M. Park, Mater. Sci. Eng. A, 449, 1018 (2007) https://doi.org/10.1016/j.msea.2006.02.302
  11. H. Y. Wang, Q. C. Jiang, X. L. Li and F. Zhao, J. Alloys Compd. 366, L9 (2004) https://doi.org/10.1016/S0925-8388(03)00693-5
  12. Wenxing Zhang, Donglang Chai, Guang Ran and Jing'en Zhou, Mater. Sci. Eng. A 476, 157 (2008)
  13. S. C. Tjong and K. F. Tam, Materials Chemistry and Physics 97, 91 (2006) https://doi.org/10.1016/j.matchemphys.2005.07.075
  14. Y. Wang, H. Y. Wang, B. X. Ma, K. Xiu and Q. C. Jiang, Journal of Alloys and Compounds 422, 178 (2006) https://doi.org/10.1016/j.jallcom.2005.11.076
  15. Fluent V6.1 Users Manual Users Guide (2003)
  16. Derksen J., Harry E. and Akker V., Large eddy simulations on the flow driven by a Rushton turbine, AIChE J. 45, 209 (1999) https://doi.org/10.1002/aic.690450202
  17. S. M. H. Mirbagheri, M. Dadashzadeh, S. Serajzadeh, A. K. Taheri and P. Davami, Applied Mathematical Modelling 28, 933 (2004) https://doi.org/10.1016/j.apm.2004.03.007
  18. Y. Wang, H. Y. Wang, B. X. Ma, K. Xiu and Q. C. Jiang, Journal of Alloys and Compounds 422, 178 (2006) https://doi.org/10.1016/j.jallcom.2005.11.076