Browse > Article

LES Method Modeling and Fabrication of Al-TiB2 Composite by In-situ Melt Mixing Process  

Park, Jungsu (School of Material Science and Engineering, Pusan National University)
Kim, Jonghoon (School of Material Science and Engineering, Pusan National University)
Ha, Manyoung (Department of Mechanical Engineering, Pusan National University)
Park, Bongkyu (School of Material Science and Engineering, Pusan National University)
Park, Yongho (School of Material Science and Engineering, Pusan National University)
Park, Ikmin (School of Material Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Metals and Materials / v.46, no.6, 2008 , pp. 382-389 More about this Journal
Abstract
To manufacture Al MMCs, in-situ melt mixing process is used because it is free from contamination, and it makes reinforcements homogeneously dispersed. Large eddy simulation method is used to find the optimum melt mixing condition. At the Re 3000, the most suitable mixing is occurred between Al-Ti and Al- B melts. The in-situ formed $TiB_2$ particles has the size varying from 40 nm to 130 nm, due to the increase of cooling rate, and exhibits a homogeneous dispersion. And the interface between reinforcement and matrix is clean. Both hardness and Young's modulus of this composite are improved with increasing the cooling rate.
Keywords
Melt mixing process; $Al-TiB_2$ composite; Large eddy simulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 D. H. Song, H. S. Choi, I. D. Choi, I. M. Park and K. M. Cho, J. Kor. Inst. Met. & Mater. 38, 785 (2000)
2 B. Q. Han and T. G. Langdon, Mater. Sci. Eng. A 410, 430 (2005)
3 H. C. Park, S. C. Kang, H. K. Kwon and Y. S. Kim, J. Kor. Inst. Met. & Mater. 40, 432 (2002)
4 Yijie Zhang, Naiheng Ma and Haowei Wang, Materials Letters 61, 3273 (2007)   DOI   ScienceOn
5 S. M. H. Mirbagheri, M. Dadashzadeh, S. Serajzadeh, A. K. Taheri and P. Davami, Applied Mathematical Modelling 28, 933 (2004)   DOI   ScienceOn
6 B. G. Park, S. H. Ko, Y. H. Park and J. H. Lee, Intermetallics 14, 660 (2006)   DOI   ScienceOn
7 H. Y. Wang, Q. C. Jiang, X. L. Li and F. Zhao, J. Alloys Compd. 366, L9 (2004)   DOI   ScienceOn
8 J. H. Kim, J. H. Yun, Y. H. Park, K. M. Cho, I. D. Choi and I. M. Park, Mater. Sci. Eng. A, 449, 1018 (2007)   DOI   ScienceOn
9 S. C. Tjong and K. F. Tam, Materials Chemistry and Physics 97, 91 (2006)   DOI   ScienceOn
10 I. H. Song, D. K. Kim, Y. D. Hahn and H. D. Kim, Met. & Mater. Int. 10, 301 (2004)
11 Derksen J., Harry E. and Akker V., Large eddy simulations on the flow driven by a Rushton turbine, AIChE J. 45, 209 (1999)   DOI   ScienceOn
12 M. C. Gui, J. M. Han and P. Y. Li, Mater. Sci. Technol. 20, 765 (2004)   DOI   ScienceOn
13 Fluent V6.1 Users Manual Users Guide (2003)
14 Wenxing Zhang, Donglang Chai, Guang Ran and Jing'en Zhou, Mater. Sci. Eng. A 476, 157 (2008)
15 Y. Wang, H. Y. Wang, B. X. Ma, K. Xiu and Q. C. Jiang, Journal of Alloys and Compounds 422, 178 (2006)   DOI   ScienceOn
16 S. C. Tjong and G. S. Wang, Adv. Eng. Mater. 6, 964 (2004)   DOI   ScienceOn
17 Y. Wang, H. Y. Wang, B. X. Ma, K. Xiu and Q. C. Jiang, Journal of Alloys and Compounds 422, 178 (2006)   DOI   ScienceOn
18 E. L. Zhang, S. Y. Zeng and B. Yang, J. Mater. Sci. Technol. 14, 255 (1998)