• Title/Summary/Keyword: Optimum Production Conditions

Search Result 1,056, Processing Time 0.027 seconds

Characterization of Acetobacter sp. Strain CV1 Isolated from a Fermented Vinegar (고산도 생성 초산균의 분리 및 발효특성)

  • Baek, Chang-ho;Baek, Seong-yeol;Lee, Se Hee;Kang, Ji-Eun;Choi, Han-Seok;Kim, Jae-Hyun;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.126-133
    • /
    • 2015
  • Ten types of farm-made brewing vinegars were collected and four high acetic acid-producing strains (CV1, CV3, CV5, and CV6) were isolated. Among them strain CV1, exhibiting highly alcohol-resistant and acetic acid-producing properties, was selected and its taxonomic properties were investigated by phenotypic (particularly chemotaxonomic) characterization and phylogenetic inference based on 16S rRNA gene sequence analysis. On SM broth agar, cells of strain CV1 were gram-stainingnegative and formed pale white colonies with smooth to rough surfaces. Strain CV1 produced acetate from ethanol and was resistant to up to 8% (v/v) ethanol in LM broth. Strain CV1 had a G+C content of 61.0 mol%, contained meso-DAP as the cell wall amino acid, and possessed Q-10 as the major ubiquinone. A comparison of 16S rRNA gene sequences showed that strain CV1 was most closely related to Gluconacetobacter saccharivorans (≥99.0% identity). In liquid media, the optimum growth conditions for acetic acid production were 30℃ and pH >3.0 and strain CV1 produced 9.3% and 8.4% acetic acids from 10% and 9% alcohol concentrations, respectively.

Comparative Study on Recovery of Nickel by Ion Exchange and Electrodialysis (이온교환과 전기투석을 이용한 니켈회수의 비교연구)

  • Sim, Joo-Hyun;Seo, Hyung-Joon;Seo, Jae-Hee;Kim, Dae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.640-647
    • /
    • 2006
  • It is difficult to treat wastewater involved in heavy metal in electroplating industry. Recently, many industries adopt the clean technology to prevent production of pollutant in the process or reuse after the appropriate pollutant treatment. In this study, we estimate the ability of recovery of nickel and the efficiency using lab-scale ion exchange and electrodialysis process with electroplating industry wastewater. In the ion exchange experiments with 5 types of resin, the result showed that S 1467(gel-type strong acidic cation exchange resin) has the highest exchange capacity. And it showed that the 4 N HCl has the highest in regeneration efficiency and maximum concentration in the regeneration experiments with various kinds md concentration of the regenerant. During the electrodialysis experiments, we varied the current density, the concentration of electrode rinse solution, the flow rate of concentrate and electrode rinse solution in order to find the optimum operating condition. As a result, we obtained $250A/m^2$ of current density, 2 N $H_2SO_4$ of concentration of electrode rinse solution, 30 mL/min of flow rate of concentrate and electrode rinse solution as the best operating conditions. We performed the scale-up experiments on the basis of ion exchange and electrodialysis experiments. And we obtained the experimental result that exchange capacity of S 1467 was 1.88 eq/L resin, and regeneration efficiency was 93.7% in the ion exchange scale-up experiment, we also got the result that concentration and dilution efficiency increased, and current efficiency kept constant in the scale-up experiments.

The Anion Exchange Chromatographic Studies on the Polymerization Equilibria of Molybdate and Tungstate and the Production of APT (음이온 교환크로마토그래피에 의한 몰리브덴산과 텅스텐산의 중합, 평형 및 APT 제조에 관한 연구)

  • Cha Ki Won;Park Kee Chae
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.225-232
    • /
    • 1975
  • The elution behaviour of molybdate and tungstate through anion exchange column has been studied at the various pH. A discussion is made to evaluate the equilibrium constants of the polymerization of these acids comparing with the behaviour of chromate ion and dichromate ion. The eqailibrium constants found at $20^{\circ}$ are $K = 4{\times}10^{53} for 7MoO_4^{2-} + 8H^+ {\longleftrightarrow} Mo7O_{24}^{6- }+ 4H_2O$$ K = 3{\times}10^{54} for 6WO_4^{2-} + 7H^+ {\longleftrightarrow} HW6O_{21}^{5-} + 7H_2O$ referring to this results the conditions of separation of tungstate and molybdate are obtained. iThe quantitative separations of carbonate, molybdate and tungstate from the pregnant solution have been established by anion exchange chromatography, using the $22 cm{\times}44.27 cm^2$ column of Rexyn 201. The optimum eluents for the quantitative separation of those ions are as follows; 0.2M solution of sodium chloride at pH 8 for carbonate, the mixture of 0.5 M ammonium chloride and 0.05 M sodium sulfate at pH 5 for molybdate and 0.5 M solution of ammonium chloride at pH 10 for tungstate. Tungstate is directly recovered from the pregnant solution as a form of ammonium paratungstate, by eluting with ammonium chloride solution.

  • PDF

The Establishment of Optimum Fermentation Conditions for Prunus mume Vinegar and Its Quality Evaluation (매실식초의 최적 발효조건 설정 및 품질특성)

  • Ko, Yu-Jin;Jeong, Dong-Yuk;Lee, Jeong-Ok;Park, Mi-Hwa;Kim, Eun-Jung;Kim, Jong-Won;Kim, Young-Suk;Ryu, Chung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.3
    • /
    • pp.361-365
    • /
    • 2007
  • This study was conducted to improve the Prunus mume vinegar production. The most suitable concentration of the Prunus mume juice was 6%. Static fermentation was a more suitable process for acetic acid fermentation of the Prunus mume vinegar than shaking fermentation. Major components of the organic acids were acetic, citric, tartaric and malic acid at 4.2, 1.2, 0.3, and 0.1%, respectively. Also, major components of the free sugars were glucose and fructose, and 80.96 mg% of asparagine was included in the Prunus mume vinegar as a main free amino acid. Alcohol components of the Prunus mume vinegar were n-propyl alcohol, iso-butyl alcohol, n-butyl alcohol, iso-amyl alcohol, and n-amyl alcohol.

Optimization of Hot-water Extraction Conditions of Bioactive Compounds from Coffee Residue Extracts (커피박으로부터 생리활성물질 생산 증대를 위한 열수추출 공정 개발)

  • Jo, JaeMin;Kim, SeungKi;Min, Bora;Jung, HyunJin;Han, Yeojung;Kim, JinWoo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.358-362
    • /
    • 2017
  • In this study, the optimization of extraction parameters (solvent, temperature, time, solvent concentration) for the maximization of polyphenol extraction was performed to produce value-added food and cosmetic additives using a byproduct of coffee extraction process (coffee residue). All of the extraction parameters evaluated in this experiment had significant effects on polyphenol extraction and the results showed the effect of NaOH concentration on the polyphenol production was most significant among tested parameters. Especially, hot water extraction using acid or base was effective rather than hot-water extraction and the addition of 0.1 mol of NaOH increased 1.5 times extraction concentration compared with hot-water extraction using distilled water. It was found that hot-water extraction with NaOH was more effective than hot-water extraction, and 36.5 mg GAE/g DM was obtained under optimum condition of $100^{\circ}C$, 2 mol of NaOH and 30 min. This result was 2.9 times higher than that of 12.5 mg GAE/g DM obtained from the hot-water extraction before optimization. Thus, coffee residue could be used for food and cosmetic industry as a high-value additive such as antioxidant.

Studies on Basidiomycetes(2) - Production of Mushroom Mycelium(Pleurotus ostreatus and Auricularia auricula-judae) in Shaking Culture - (담자균(擔子菌)에 관한 연구(硏究)(2) - 느타리와 목이의 진탕 배양(培養)에 의한 균사체(菌絲體) 생산(生産)에 관하여 -)

  • Hong, Jae-Sik;Kwon, Yong-Ju;Jung, Gi-Tae
    • The Korean Journal of Mycology
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1983
  • Nutritional characteristics and conditions for mycelial yield of Pleurotus ostreatus and Auricularia auricula-judae in shaking culture were investigated. Among the sugar substances, glucose and mannitol showed the good effect for mycelial yield of P. ostreatus, and mannitol and fructose were good for the mycelial yield of A. auricula-judae. Among the various organic acids, fumaric acid were good for the mycelial yield of P. ostreatus and A. auricula-judae. Among the nitrogen sources, peptone and urea showed the good result for mycelial yield of P. ostreatus, and peptone and casamino acid were good for mycelial yield of A. auricula-judae. Among the various amino acids, asparagin and threonine showed the good result for mycelial yield of P. ostreatus, and serine and threonine were good for mycelial yield of A. auricula-judae. Among the various vitamins, folic acid and thiamine were suitable for mycelial yield of P. ostreatus, and folic acid, inositol and riboflavin were suitable for mycelial yield of A. auricula-judae. Mycelial yield of P. ostreatus and A. auricula-judae were enhanced by the addition of $MgSO_4\;and\;KH_2PO_4$ at the concentration of 0.08 and 0.2% respectively. The optimum temperature and pH for mycelial yield were from $25\;to\;30^{\circ}C$ and pH 5.5 to 6.5 in P. ostreatus, and from $25\;to\;30^{\circ}C$ and pH 6.0 to 7.0 in A. auricula-judae.

  • PDF

Characterization of Erythritol 4-Phosphate Dehydrogenase from Penicillium sp. KJ81 (Penicillium sp. KJ81이 생산하는 Erythritol 4-Phosphate Dehydrogenase의 특성)

  • Yun, Na-Rae;Park, Sang-Hee;Lim, Jai-Yun
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.200-207
    • /
    • 2009
  • In this study, the characterization of purified erythritol 4-phosphate dehydrogenase, key enzyme of erythritol biosynthesis, produced by Penicillium sp. KJ81 was investigated. Optimum production conditions of erythritol 4-phosphate dehydrogenase was 1 vvm areration, 200 rpm agitation, at $37^{\circ}C$ for 8 days in the medium containing 30% sucrose, 0.5% yeast extract, 0.5% $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, and 0.05%$MgCl_2$. Erythritol 4-phosphate dehydrogenase was purified through ultrafiltration and preparative gel electrophoresis from cell extract of Penicillium sp. KJ81. This enzyme was especially active on erythrose 4-phosphate with 1.07 mM of Km value. It gave a single band on native polyacrylamide gel electrophoresis and an isoelectric point of 4.6. The enzyme had an optimal activity at pH 7.0 and $30^{\circ}C$. It was stable between pH 4.0 and 9.0, and also below $30^{\circ}C$. The enzyme activity was completely inhibited by 1mM $Cu^{2+}$ and 1 mM $Zn^{2+}$, but was not significantly affected by other cations tested. This enzyme was inactivated by treatment of tyrosine specific reagent, iodine and tryptophan specific reagent, N-bromosuccinimide. The substrate of the enzyme, erythrose 4-phosphate showed protective effect on the inactivation of the enzyme by both reagents. These results suggest that tryptophan and tyrosine residues are probably located at or near active site of the enzyme.

The Microstructural Properties Change Owing to the Sintering Condition of T42 High Speed Steel Produced by Powder Injection Molding Process (분말 사출 성형법으로 제조된 T42 고속도 공구강의 소결 조건에 따른 조직 특성 변화)

  • Do, Kyoung-Rok;Choi, Sung-Hyun;Kwon, Young-Sam;Cho, Kwon-Koo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • High speed steels (HSS) were used as cutting tools and wear parts, because of high strength, wear resistance, and hardness together with an appreciable toughness and fatigue resistance. Conventional manufacturing process for production of components with HSS was used by casting. The powder metallurgy techniques were currently developed due to second phase segregation of conventional process. The powder injection molding method (PIM) was received attention owing to shape without additional processes. The experimental specimens were manufactured with T42 HSS powders (59 vol%) and polymer (41 vol%). The metal powders were prealloyed water-atomised T42 HSS. The green parts were solvent debinded in normal n-Hexane at $60^{\circ}C$ for 24 hours and thermal debinded at $N_2-H_2$ mixed gas atmosphere for 14 hours. Specimens were sintered in $N_2$, $H_2$ gas atmosphere and vacuum condition between 1200 and $1320^{\circ}C$. In result, polymer degradation temperatures about optimum conditions were found at $250^{\circ}C$ and $480^{\circ}C$. After sintering at $N_2$ gas atmosphere, maximum hardness of 310Hv was observed at $1280^{\circ}C$. Fine and well dispersed carbide were observed at this condition. But relative density was under 90%. When sintering at $H_2$ gas atmosphere, relative density was observed to 94.5% at $1200^{\circ}C$. However, the low hardness was obtained due to decarbonization by hydrogen. In case of sintering at the vacuum of $10^{-5}$ torr at temperature of $1240^{\circ}C$, full density and 550Hv hardness were obtained without precipitation of MC and $M_6C$ in grain boundary.

Production of Single-Cell Protein on Petroleum Hydrocarbon -II. On the Growth of Candida tropicalis KIST 359- (석유탄화수소를 이용한 단세포단백질의 생산에 관한연구 -II. Candida tropialis KIST 359 에 대하여-)

  • Park, Yoong;Mheen, Tae-Ick;Pyun, Yoo-Ryang;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-67
    • /
    • 1970
  • The growth characteristics of Candida tropicalis KIST 359, isolated from soil samples collected at an oil depot in Korea, have been studied by cultivating batches under varying conditions. The conclusions of the study were: 1. The yeast easily assimilates hydrocarbons in a range of $C_{14}-C_{17}$, and the optimum cultivation temperature and pH are $30^{\circ}C$ and 5.5, respectively. 2. Using this strain of micro-organism, gas oil gives a higher cell yield than kerosine and with gas oil except urea all other nitrogen sources $(NH_4NO_3,\;NH_4Cl,\;(NH_4)_2SO_4\;and\;(NH_4)_2HPO_4)$ similarly support a satisfactory growth of the yeast. 3. The highest yield is obtained with a gas oil level of 10%(v/v), and concentrations of nitrogen source and $MgSO_4{\cdot}7H_2O$ of 0.5 and 0.05%(w/v), respectively. 4. The protein content of dried yeast cells is 59.8%. Its amino acid composition can be compared well with that of FAO provisional patterns, but with a low methionine and a high lysine content.

  • PDF

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.