Browse > Article
http://dx.doi.org/10.7845/kjm.2012.036

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond  

Kang, Zion (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Byung-Hyuk (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Shin, Sang-Yoon (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Hee-Sik (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Korean Journal of Microbiology / v.48, no.3, 2012 , pp. 192-199 More about this Journal
Abstract
Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.
Keywords
microalgae; microbial diversity; open culture system; wastewater treatment;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Aaronson, S. and Dubinsky, Z. 1982. Mass production of microalgae. Cell. Mol. Life Sci. 38, 36-40.   DOI   ScienceOn
2 APHA. 1998. Standard methods for the examination of water and wastewater, 20th ed. APHA, Washington, D.C. USA.
3 Cain, J.R., Paschal, D.C., and Hayden, C.M. 1980. Toxicity and bioaccumulation of cadmium in the colonial green alga Scenedesmus obliquus. Arch. Environ. Contam. Toxicol. 9, 9-16.   DOI   ScienceOn
4 Carberry, J.B. and Greene, R.W. 1992. Model of algal bacterial clay wastewater treatment system. Water Sci. Technol. 26, 1697-1706.
5 Chen, Y., Lin, C.J., Jones, G., Fu, S., and Zhan, H. 2009. Enhancing biodegradation of wastewater by microbial consortia with fractional factorial design. J. Hazard. Mater. 171, 948-953.   DOI
6 Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306.   DOI   ScienceOn
7 Crocetti, G.R., Hugenholtz, P., Bond, P.L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L.L. 2000. Identification of polyphosphateaccumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 88, 1175-1182.
8 Finkmann, W., Altendorf, K., Stackebrandt, E., and Lipski, A. 2000. Characterization of $N_{2}O$-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. mov., sp. nov. and Pseudoxanthomonas broegernensis gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50, 273-282.   DOI   ScienceOn
9 Gander, M., Jefferson, B., and Judd, S. 2000. Aerobic MBRs for domestic wastewater treatment: a review with cost consideration. Sep. Purif. Technol. 18, 119-130.   DOI   ScienceOn
10 Gonzalez, L.E., Cañizares, R.O., and Baena, S. 1997. Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour. Technol. 60, 259-262.   DOI   ScienceOn
11 Guerrero, M.G., Vega, J.M., and Losada, M. 1981. The assimilatory nitrate-reducing system and its regulation. Ann. Rev. Plant Physiol. 32, 169-204.   DOI   ScienceOn
12 Guschina, I.A. and Harwood, J.L. 2006. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 45, 160-186.   DOI   ScienceOn
13 Heo, H.W., Sin, G.S., Park, S.G., Park, J.B., JuChoe, E., and Kang, H. 2003. Evaluation of affecting factors for efective anaerobic phosphorus release. J. KSEE. 25, 155-162.
14 Hesselmann, R.P.X., Werlen, C., Hahn, D., Meer, J.R.v.d., and Zehnder, A.J.B. 1999. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22, 454-465.   DOI   ScienceOn
15 Huang, J.S., Wu, C.S., Jih, C.G., and Chen, C.T. 2001. Effect of addition of Rhodobacter sp. to activated-sludge reactors treating piggery wastewater. Water Res. 35, 3867-3875.   DOI   ScienceOn
16 Ishii, K. and Fukui, M. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67, 3753-3755.   DOI   ScienceOn
17 Kim, K.J. and Yoon, S.H. 2001. Wastewater treatment using membrane bioreactors (MBR). J. Ind. Eng. Chem. 12, 239-248.
18 Jaspers, E., Nauhaus, K., Cypionka, H., and Overmann, J. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36, 153-164.   DOI
19 Jeong, M.L., Gillis, J.M., and Hwang, J.-Y. 2003. Carbon dioxide mitigation by microalgal photosynthesis. Bull. Korean Chem. Soc. 24, 1763-1766.   과학기술학회마을   DOI   ScienceOn
20 Juretschko, S., Loy, A., Lehner, A., and Wagner, M. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25, 84-99.   DOI   ScienceOn
21 Lau, P.S., Tam, N.F.Y., and Wong, Y.S. 1995. Effect of algal density on nutrient removal from primary settled wastewater. Environ. Pollut. 89, 59-66.   DOI   ScienceOn
22 Mandal, S. and Mallick, N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84, 281-291.   DOI   ScienceOn
23 Martinez, M.E., Sánchez, S., Jimenez, J.M., Yousfi, F.E., and Munoz, L. 2000. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73, 263 -272.   DOI   ScienceOn
24 Melin, T., Jefferson, B., Bixio, D., Thoeye, C., Wilde, W.D., Koning, J.D., Graaf, J., and Wintgens, T. 2006. Membrane bioreactor technology on wastewater treatment and reuse. Desalination 187, 271-282.   DOI   ScienceOn
25 Melis, A. and Happe, T. 2001. Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740-748.   DOI   ScienceOn
26 Muyzer, G., Waal, E.C.d., and Uitierlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
27 Minowa, T., Yokoyama, S., Kishimoto, M., and Okakura, T. 1995. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel. 74, 1735-1738.   DOI   ScienceOn
28 Morris, I. and Syrett, P.J. 1963. The development of nitrate reductase in Chlorella and its repression by ammonium. Arch. Microbiol. 47, 32-41.
29 Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2, 317-322.   DOI   ScienceOn
30 Nakayama, T., Watanabe, S., Mitsui, K., Uchida, H., and Inouye, I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44, 47-55.   DOI
31 Park, J.B., Park, S.K., Hur, H.W., and Kang, H. 2009. Estimation of kinetic coefficient in submerged membrane bioreactor for biological nutrient removal. J. KSEE 31, 109-113.   과학기술학회마을
32 Park, J.B., Shin, K.S., Hur, H.W., and Kang, H. 2011. Development of influent controlled membrane bioreactor for biological nutrient removal on municipal wastewater. J. KSEE 33, 485-491.   과학기술학회마을   DOI
33 Philipp, B. and Schink, B. 2000. Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1. Arch. Microbiol. 173, 91-96.   DOI   ScienceOn
34 Pittman, J.K., Dean, A.P., and Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102, 17-25.   DOI   ScienceOn
35 Smith, F.W. and Thompson, J.F. 1971. Regulation of nitrate reductase in Chlorella vulgaris. Plant Physiol. 48, 224-227.   DOI   ScienceOn
36 Rectenwald, L.L. 2000. Nutrient removal from wastewater effluent using ecological water treatment system. Environ. Sci. Technol. 34, 522-526.   DOI   ScienceOn
37 Scragg, A.H., Morrison, J., and Shales, S.W. 2003. The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb. Technol. 33, 884-889.   DOI   ScienceOn
38 Shi, L., Cai, Y., Li, P., Yang, H., Liu, Z., Kong, L., Yu, Y., and Kong, F. 2009. Molecular identification of the colony-associated cultivable bacteria of the Cyanobacterium Microcystis aeruginosa and their effects on algal growth. J. Freshw. Ecol. 24, 211-218.   DOI   ScienceOn
39 Soeder, C.J. 1980. Mass production of microalgae: Results and Prospects. Hydrobiologia. 72, 197-209.   DOI
40 Syrett, P.J. and Morris, I. 1963. The inhibition of nitrateassimilation by ammonium in Chlorella. Biochimica et Biophysica Acta. 67, 566-575.   DOI
41 Wilkiea, A.C. and Mulbry, W.W. 2002. Recovery of dairy manure nutrients by benthic fresh water algae. Bioresour. Technol. 84, 81-91.   DOI   ScienceOn
42 Yun, Y.S., Lee, S.B., Park, J.M., Lee, C.I., and Yang, J.W. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Tech. Biotechnol. 69, 451-455.   DOI   ScienceOn
43 Yun, Y.S., Park, J.M., and Yang, J.W. 1996. Enhancement of $CO_{2}$ tolerance of Chlorella vulgaris by gradual increase of $CO_{2}$ concentration. Biotechnol. Tech. 10, 713-716.