• 제목/요약/키워드: Optimum Process Conditions

검색결과 1,325건 처리시간 0.03초

해상풍력발전용 타워플랜지 소재의 잉고트 파쇄공정설계 (Ingot-Breakdown Design of Tower Flange Material for Offshore Wind Turbine)

  • 유가영;강남현;김정한;홍재근;이종수;이진모;김남용;염종택
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.412-419
    • /
    • 2012
  • The ingot-breakdown scheme of a tower flange material (low-alloy steel) for offshore wind turbine was investigated using finite element (FE) simulations and experimental analyses. Based on compression test results of the low-alloy steel, a deformation processing map was generated using the superposition approach between the dynamic materials model (DMM) and Ziegler's instability criterion. The deformation processing map allowed determination of the optimum process conditions for the tower flange material. Within the FE simulations of the ingot breakdown process, the Cockcroft-Latham criterion, which considers ductile fracture, was used to predict the possibility of forming defects during the hot working process. In general, the critical value for the ductile fracture of steel is 0.74. During the ingot-breakdown under optimum process conditions, the actual tower flange forgings exhibited a relatively uniform shape without any forming defects.

유한요소해석을 이용한 마이크로 박판 미세 패턴 롤-롤 성형공정 설계 (Design of Roll-to-Roll Forming Process for Micro Pattern on the Thin Sheet Metal by Finite Element Analysis)

  • 차성훈;신명수;이혜진;김종봉
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.167-172
    • /
    • 2010
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. The forming of micro pattern for small electric device such as LCD panel by incremental roll forming process is analyzed. Firstly, the optimum analysis conditions are found by several analyses. And then, formability is analyzed for various protrusion shapes at various forming temperatures. The formability is evaluated in terms of filling ratio and damage value. The filling ratio is defined from the tool geometry and critical damage is determined from the analysis of uniaxial tensile test. Finally, optimum forming conditions that guarantee the successful forming are found.

고압연소 소결(HPCS)법에 의한 탄화티타늄(TiC)의 합성 및 소결 (Simultaneous Synthesis and Sintering of Titanium Carbide by HPCS(High Pressure-Self Combustion Sintering))

  • 김지헌;최상욱;조원승;조동수;오장환
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.473-482
    • /
    • 1997
  • Titanium carbide(TiC) has a poor sinterability due to the strong covalent bond. Thus, it is generally fabricated by either hot pressing or pressureless-sintering at elevated temperature by the addition of sintering aids such as nickel(Ni), molybdenum(Mo) and cobalt(Co). However, these sintering methods have the following disadvantages; (1) the complicated process, (2) the high energy consumption, and (3) the possibility of leaving inevitable impurities in the product, etc. In order to reduce above disadvantages, we investigated the optimum conditions under which dense titanium carbide bodies could be synthesized and sintered simultaneously by high pressure self-combustion sintering(HPCS) method. This method makes good use of the explosive high energy from spontaneous exothermic reaction between titanium and carbon. The optimum conditions for the nearly full-densification were as follows; (1) The densification of sintered body becomes high by increasing the pressing pressure from 400kgf/$\textrm{cm}^2$ upto 1200 kgf/$\textrm{cm}^2$. (2) Instead of adding the coarse graphite or activated carbon, the fine particles of carbon black should be added as a carbon source. (3) The optimum molar ratio of carbon to titanium (C/Ti) was unity. In reality, titanium carbide body which were prepared under optimum conditions had relatively dense textures with the apparent porosity of 0.5% and the relative density of 98%.

  • PDF

Application of Box Wilson experimental design method for removal of acid red 95 using ultrafiltration membrane

  • Akdemir, Ezgi Oktav
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.309-315
    • /
    • 2018
  • The applicability of the ultrafiltration process for color removal from dye-containing water has been examined in this study. The optimization of major process variables, such as dye concentration, chitosan concentration and transmembrane pressure on permeate flux and color removal efficiency was investigated. To find the most appropriate results for the experiment, the Box-Wilson experimental design method was employed. The results were correlated by a response function and the coefficients were determined by regression analysis. Permeate flux variation and color removal efficiency determined from the response functions were in good agreement with the experimental results. The optimum conditions of chitosan concentration, dye concentration and pressure were 50 mg/l, 50 mg/l and 3 bars, respectively for the highest permeate flux. On the other hand, optimum conditions for color removal efficiency were determined as 50 mg/l of dye concentration, 50 mg/l of chitosan concentration and 1 bar of pressure.

Agaricus blazei 자실체로부터 초임계 유체를 이용한 생리활성물질 추출공정 (Supercritical Fluid Extraction of Physiologically Active materials from Agaricus blazei Fruiting Bodies)

  • 최정우
    • KSBB Journal
    • /
    • 제15권4호
    • /
    • pp.408-410
    • /
    • 2000
  • 생리활성물질의 함유량이 많은 아가리쿠스버섯으로부터 초임계 유체 추출 기술을 이용하여 비극성 생리활성물질인 linoleic acid를 분리, 정제하였다. Gas chromatography - mass spectrometer를 이용하여 추출된 물질의 정성분석을 수행하여 추출된 물질은 약리작용 효과를 가지는 linoleic acid (cis-9, cis-12-octadecadienoic acid)로 분석되었다. 초임계 추출법을 이용한 아가리쿠스 버섯으로부터의 생리활성물질 추출공정의 최적화를 위하여 다양한 온도와 압력하에서 실힘을 수행하였으며 추출 효율을 비교한 결과 $50^{\circ}C, 200 kg_f/cm^2$의 최적 운전조건을 결정하였다.

  • PDF

MANUFACTURE AND CHARACTERISTICS OF SNACK-TYPE PRODUCTS CONTAINING MEAT AND STARCH

  • Cho, Soo-Hyun
    • 한국축산식품학회:학술대회논문집
    • /
    • 한국축산식품학회 1997년도 제18차 정기총회 및 학술발표회
    • /
    • pp.19-39
    • /
    • 1997
  • Extrusion conditions were optimized for blends of ground lamb and starch using a single-screw extruder for the purpose of producing expanded snack-type products. A central composite rotatable response surface methodology(RSM) design was used with variation in feed moisture, process temperature, and screw speed. The three variables significantly affected one or more of the measured physical properties of extrudates. The optimum conditions for minimum shear force values were 26.5% feed moisture, $148^{\circ}C$ process temperature, and 134 rpm screw speed. Lean ground beef, chicken, goat, lamb or mutton was blended with corn starch, and extruded at the optimum condition established from RSM experiments. Physical/rheological properties were generally similar, water activity was low (<0.12) and total aerobic plate counts were <10 for all products. Extrudates containing chicken had the highest ratio of polyunsaturated fatty acids to saturated fatty acids, whereas those containing beef had the highest ratio of monounsaturated fatty acids to saturated fatty acids. Sensory data indicated that texture was acceptable and flavor characteristics were not different among the products.

  • PDF

Optimum Design of Process Conditions to Minimize Residual Stress and Birefringence in Injection -Molded Parts

  • Sejin Han;Huh, Yong-Jeong;Kang, Shin-il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.17-25
    • /
    • 2001
  • In this paper, a theoretical study has been made to reduce the residual stress and birefringence in the injection-molded parts. An optimization program has been used to minimize the residual stresses and birefringence calculated from a simulation program. The thermally induced stress has been calculated using a linear viscoelasticity model. The flow stress and birefringence has been calculated using the Leonov's viscoelasticity model. This has been applied to the injection molding of a circular disc and a plate. the optimization has been done either by changing process variables while maintaining the mold temperature constant or by varying the mold-wall temperature with time. This study shows the significant reduction in residual stress and birefringence is possible through the optimization of processing conditions.

  • PDF

비구면 광학렌즈 성형에 있어서 유한요소법과 신경회로망을 이용한 사출조건 예측 시스템의 개발 (The prediction of the optimum injection conditions of aspherical lens by using FEM and Neural Network)

  • 곽태수;스즈키토오루;오오모리히토시;배원병
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.168-171
    • /
    • 2002
  • A neural network model for predicting the quality or soundness of the injected plastic aspherical lens based on process parameters has been developed. The approach uses a Real Time Recurrent Neural Network 4-5-2 (RTRN) trained based on input/output data that were taken from FE analysis worts carried out through a CAE software. The system has been developed to search an optimum set of process parameters and reduce the time required for planning the conditions of plastic injection molding at the design stage.

  • PDF

초정밀 선반을 사용한 알루미늄 7075와 실리콘의 초정밀가공 특성연구 (A Study on the Precision Machining Characteristics of Aluminium 7075 and Silicon using Ultra-precision Turning Machine)

  • 김우강;김건희;원종호
    • 한국기계가공학회지
    • /
    • 제5권4호
    • /
    • pp.27-32
    • /
    • 2006
  • This study aims to find the optimal cutting conditions, when are nonferrous metals(aluminum and silicon) are machined with diamond tool of diamond turning machine. Diamond turning machine has been widely used in manufacturing optical reflectors of nonferrous metals. Such as aluminium and copper are easy to be machined because of their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of this study is to find the optimum machining conditions for ductile cutting of silicon and aluminium.

  • PDF

Effect of Oxygen for Diamond Film Synthesis with C-Hexane in Microwave Plasma Enhanced CVD Process

  • Han, Sang-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.983-989
    • /
    • 2012
  • The purpose of this paper is to decide the optimum synthesis conditions of polycrystalline diamond films according to the ratio of gas mixture. Diamond films were deposited with cyclo-hexane as a carbon precursor by the microwave plasma enhanced chemical vapor deposition process. The optimum oxygen ratio to cyclo-hexane was reached about 125 % under the fixed 0.3% c-hexane in hydrogen. Oxygen plays a role in etching the graphitic components of carbon sp2 bond effectively. By OES measurement, the best synthesis conditions found out about 12.5 % and 15.75 %, which is the emission intensity ratios of CH(B-X) and $H{\beta}$ on $H{\alpha}$, respectively. Also, the electron temperature was similar about 5,000 to 5,200 K in this work.