DOI QR코드

DOI QR Code

Ingot-Breakdown Design of Tower Flange Material for Offshore Wind Turbine

해상풍력발전용 타워플랜지 소재의 잉고트 파쇄공정설계

  • Received : 2012.07.18
  • Accepted : 2012.09.28
  • Published : 2012.11.01

Abstract

The ingot-breakdown scheme of a tower flange material (low-alloy steel) for offshore wind turbine was investigated using finite element (FE) simulations and experimental analyses. Based on compression test results of the low-alloy steel, a deformation processing map was generated using the superposition approach between the dynamic materials model (DMM) and Ziegler's instability criterion. The deformation processing map allowed determination of the optimum process conditions for the tower flange material. Within the FE simulations of the ingot breakdown process, the Cockcroft-Latham criterion, which considers ductile fracture, was used to predict the possibility of forming defects during the hot working process. In general, the critical value for the ductile fracture of steel is 0.74. During the ingot-breakdown under optimum process conditions, the actual tower flange forgings exhibited a relatively uniform shape without any forming defects.

Keywords

References

  1. L. Germanisher, 2003, Rules and regulations, IV - Non-marine, Part 1 -Wind Energy, Regulation for the certification of the Wind Energy Conversion Systems, Germanischer Lloyd, Hamburg, Chapter 1-11.
  2. S. H. Cho, S. I. Kim, Y. C. Yoo, 1998, The EF Fects of Deformation Variables on Hot Workability of Austenitic Stainless Steel, Met. Mater. Int., Vol. 4, No. 4, pp. 732-736. https://doi.org/10.1007/BF03026389
  3. E. J. Jung, J. T. Yeom, J. H. Kim, D. G. Lee , N. K. Park, C. S. Lee, 2006, Evaluation of High Temperature Workability of A350 LF2 using the Deformation Processing Map, Trans. Mater. Process., Vol.15, No.4, pp. 333-339. https://doi.org/10.5228/KSPP.2006.15.4.333
  4. Y. V. R. K. Prasad, T. Seshacharyulu, 1998, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., Vol. 43, No. 6, pp. 243-258. https://doi.org/10.1179/095066098790105618
  5. C. I. Garcia, G. D Wang, D. E. Camus, E. A. Loria, A. J. EdArdo, 1994, Hot Deformation Behavior of Superalloy 718, The Minerals, metals & Materials Society, TMS, USA, pp. 293-302.
  6. H. Ziegler, 1963, Progress in Solid Mechanics, John Wiley and Sons. New York, NY, Vol. 4, p. 93.
  7. F. Ozturk, D. Lee, 2004, Analysis of Forming Limits Using Ductile Fracture Criteria, J. Mater. Process. Technol., Vol. 147, No. 3, pp. 397-404. https://doi.org/10.1016/j.jmatprotec.2004.01.014
  8. J. T. Yeom, Y. S. Na, 2002, Assessment of Hot Deformation and Grain Size Distribution in a Udimet 720Li Pancake, Trans. Mater. Process., Vol. 11, No. 6, pp. 538-546. https://doi.org/10.5228/KSPP.2002.11.6.538
  9. J. T. Yeom, N. K. Park, C. S. Lee, 2004, Manufacturing Technology of High-Quality Superalloy Alloy 718 Billet, Trans. Mater. Process., Vol. 13, No. 8, pp. 653-662. https://doi.org/10.5228/KSPP.2004.13.8.653
  10. J. Y. An, Y. J. Kwon, D. L. Lee, S. I. Kim, Y. C. Yoo, 2005, Modeling of Flow Stress and Micro-Structural Variations in Strain Induced Dynamic Transformation of Low Carbon Steel by Hot Torsion Deformation, J. Kor. Inst. Met. Mater., Vol. 43, No. 11, pp. 740-743.
  11. N. K. Park, J. T. Yeom, Y. S. Na, 2002, Characterization of Deformation Stability in Hot Forging of Conventional Ti-6Al-4V Using Processing Maps, J. Mater. Process. Technol., Vol. 130-131, pp. 540-545. https://doi.org/10.1016/S0924-0136(02)00801-4
  12. D. H. Kim, H. M. Kim, N. K. Park, 1992, Deformation Behavior of Superalloy 718 under Compression Load, J. Kor. Inst. Met. Mater., Vol. 30, No. 11, pp. 1393-1400.