• 제목/요약/키워드: Optimum Point

검색결과 1,218건 처리시간 0.025초

교대 기초말뚝의 측방유동 판정식에 관한 신뢰성 해석 (Reliability Analysis on the Decision Method of Lateral Flow of Foundation Piles for Abutment)

  • 안종필;김규덕;김일구;최진호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1090-1097
    • /
    • 2008
  • This study conducted the decision method of lateral flow in abutment structures founded on the soft soils and the reliability analysis on the foundation pile for abutment. On the basis of the results, this study proposed the reliability design model. Reliability analysis was conducted by applying second moment method, point estimation method, and expected total cost minimization to lateral movement index, lateral movement decision index, modified lateral movement decision index, and circular failure safety factor for the decision criteria of lateral flow. The reliability index by analysis method had a similar tendency each other. Point estimation method was found as a practical method in the aspect of convenience because it could conduct the analysis only by mean and standard deviation as well as the partial derivative on random variables was not necessary. Optimum reliability index and optimum safety according to increasing in failure factors and load ratio were analyzed and loads and resistance factors of the design criteria of optimum reliability were estimated. It presented rational design model which can consider construction level and stability and economical efficiency overall.

  • PDF

복합화력 발전플랜트의 근사 최적 열설계 해석 (Approximate Optimum Thermal Design Analysis of Combined Cycle Power Plant)

  • 전용준;신흥태;이봉렬;김동섭;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.782-787
    • /
    • 2001
  • An optimum thermal design analysis of the combined cycle power plant with triple pressure heat recovery steam generator was performed by the numerical simulation. The optimum design module used in the paper is DNCONF, a function of IMSL Library, which is widly known as a method to search for the local optimum. The objective function to be minimized is the cost of total power plant including the steam turbine power enhancement premium. The result of this paper shows that the cost reduces if the design point of power plant becomes the local optimum, and many calculations at various initial conditions should be carried out to get the value near the global optimum.

  • PDF

衝突水噴流 에 의한 熱傳達促進 에 관한 硏究 (Augmentation of Heat Transfer on a Flat Plate with Impinging Water Jet)

  • 엄기찬;서정윤
    • 대한기계학회논문집
    • /
    • 제6권4호
    • /
    • pp.301-307
    • /
    • 1982
  • The purpose of this investigation is to study heat transfer characteristics at a stagnation point on a flat plate caused by upward impinging water jet. At the stagnation point, heat transfer results by impinging water jet are being compared with the ones with supplementary water. Optimum supplementary water quantity are supplied in order to improve the effect of heat transfer for each nozzle-to-plate distance. As the nozzle outlet velocity increases, the heat transfer coefficient at stagnation point consequently increases. Changing the nozzle-to-plate distance, growth rate of heat transfer also varies accordingly. This optimum range of Reynolds number is obtained to improve heat transfer effect.

Three-Step Input Control Scheme for Minimization of Robot's Vibration

  • 장완식
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.54-64
    • /
    • 1997
  • This paper provides a practical control scheme called three-step input method in order to minimize both robot response time and the resulting residual vibration when the robot manipulator reaches its defined end point. This work is concerned with defining a simple practical method to utilize step inputs to achieve optimum response. The optimum response is achieved by using a self- adjusting input command function that is obtained during a real time processing . The practicality of this control scheme is demonstrated by using an analog computer to simulate a simulate a simple flexible robot and conventional servo controller. The experiments focus on point-to-point movement. Also, this method requires little computational effort through the intelligent use of conventional servo control technology and the robot's vibration characteristics.

  • PDF

The optimum conversion efficiency in nile blue arabinose system by photogalvanic cell

  • Lal, Mohan;Gangotri, K.M.
    • Advances in Energy Research
    • /
    • 제3권3호
    • /
    • pp.143-155
    • /
    • 2015
  • The Nile blue has been used as a photosensitizer with Arabinose as a reductant in photogalvanic cell for optimum conversion efficiency and storage capacity. Reduction cost of the photogalvanic cell for commercial utility. The generated photopotential and photocurrent are 816.0 mV and $330.0{\mu}A$ respectively. The maximum power of the cell is $269.30{\mu}W$ where as the observed power at power point is $91.28{\mu}W$. The observed conversion efficiency is 0.6095% and the fill factor 0.2566 has been experimentally found out at the power point of the photogalvanic cell, whereas the absolute value is 1.00. The photogalvanic cell so developed can work for 120.0 minutes in dark if it is irradiated for 200.0 minutes that is the storage capacity of photogalvanic cell is 60.00%. The effects of different parameters on the electrical output of the photogalvanic cell have been observed. A mechanism has also been proposed for the photogeneration of electrical energy.

광도, 온도 및 $CO_2$의 농도가 야콘의 광합성에 미치는 영향 (Effect of Light Intensity, Temperature and $CO_2$ Concentration on Photosynthesis in Yacon(Polymnia sonchifolia Poepp.& Endl.))

  • 이강수;최선영
    • 한국약용작물학회지
    • /
    • 제9권3호
    • /
    • pp.232-237
    • /
    • 2001
  • 본 연구는 야콘의 광합성 효율증진을 위한 기상환경 조건을 규명하여 재배적지의 선정과 재배관리에 대한 기초적 자료를 제공하고자 광도와 온도, 그리고 $CO_2$의 농도에 대한 광합성과 증산량을 조사하였다. 광 보상점은 ${58\;{\mu}mol\;m^{-2}\;s^{-1}}$이었고, 포화점은 ${1708\;{\mu}mol\;m^{-2}\;s^{-1}}$이었다, 증산량은 광도가 증가할수록 높아져 광도 ${2193\;{\mu}mol\;m^{-2}\;s^{-1}}$에서 약 4 mmol ${m^{-2}\;s^{-1}}$간에 이르렀다. 광합성의 최적온도는 ${24^{\circ}C}$였으며, 온도의 변화에 의하여 증산량이 4 mmol ${m^{-2}\;s^{-1}}$에서 8 mmol ${m^{-2}\;s^{-1}}$까지 증가하였을 때 광합성은 오히려 감소하는 경향이었다. 이산화탄소 보상점은 63 mol mol ${m^{-2}\;s^{-1}}$이었고, 포화점은 1155 vpm이었으며, 이산화탄소 농도가 350vpm에서 1300vpm까지 증가함에 따라 광포화점은 높아졌다.

  • PDF

역삼투 복합막 제조(I) 폴리설폰지지체 계면중합 역삼투용 복합막 제조 (A Study on Reverse Osmosis Composite Membrane with Polysulfone Supporting Membrane)

  • 김명만;박종원;민병렬
    • 멤브레인
    • /
    • 제4권1호
    • /
    • pp.38-45
    • /
    • 1994
  • 계면중합법에 의한 막 제조시 여러 제조변수의 영향을 평가하기 위한 실험을 행하여 다음과 같은 결과를 얻었다. 반응물인 MPD(m-phenylene diamine)농도가 증가할수록 배제율은 증가하나 투과유속은 감소하였다. MPD의 경우에 함침시간이 증가할수록 배제율은 증가하나 투과유속은 감소하였다. TMC(trimesoyl chloride)경우에는 함침시간이 증가할 때 투과유속은 감소한 반면 배제율은 증가한 이후 감소하였다. 열처리 온도가 상승함에 따라 투과유속은 증가하나 배제율은 증가한 이후 감소하였다. 첨가제인 NaOH는 중합시 발생하는 염산의 양이 적어 미량이 중화에 필요하였으며, 그 양이 증가할수록 배제율과 누과유속은 증가한 이후 감소하여\ulcorner. 후처리는 ethanol, isoprophlalcohol, $5~7^{\circ}C$의 물로 치환하여 배제율과 투과유속에서 상승을 가져왔으며, $5~7^{\circ}C$ 물의 경우에는 후처리 시간에 따라 극대값을 가짐을 알 수 있었다.

  • PDF

회전식 수문의 최적 설계 (Optimum Design of Radial Gate)

  • 권영두;권순범;박창규;윤영중
    • 한국전산구조공학회논문집
    • /
    • 제14권3호
    • /
    • pp.267-276
    • /
    • 2001
  • 이 논문은 회전식 수문(radial gate)의 구조해석에 근거하여 지지점 위치에 따른 모멘트 분배를 최적화하는 것에 관심을 두고 있다. 회전식 수문(radial gate)의 경제적인 관점에서의 중요성에도 불구하고 이의 지지점 위치에 따른 최적설계에 관한 자료를 찾기 어려운 실정이다. 그래서 본 연구에서는 주판(skin plate)의 곡률 반경, 수심, 동압 등의 주어진 자료를 이요약하여 지지점(gate arm)의 수가 2개인 경우와 3개인 경우에 대하여 곡선형태의 주판(skin plate)에서 지지점 (arm)의 최적 위치를 얻어서 설계자료에 의한 것들과 비교한다. 그 결과 최적 설계에 의한 회전식 수문 (radial gate)의 치수가 설계자료에 의한 것에 비해 현저히 감소되는 것을 알 수 있다.

  • PDF

광도, 온도 및 $CO_2$의 농도가 헛개나무의 광합성에 미치는 영향 (Effect of Light Intensity, Temperature and $CO_2$ Concentration on Photosynthesis in Hovenia dulcis Thunb.)

  • 이강수;최선영
    • 한국약용작물학회지
    • /
    • 제10권1호
    • /
    • pp.1-4
    • /
    • 2002
  • 본 연구는 헛개나무의 광합성 효율증진을 위한 기상환경 조건을 규명하여 재배적지의 선정과 재배관리에 대한 기초적 자료를 제공하고자 광도와 온도, 그리고 $CO_2$의 농도에 대한 광합성과 증산량을 조사하였다. 광 보상점은 $2.4\;{\mu}mol\;m^{-2}\;s^{-1}$이었고, 포화점은 $1033\;{\mu}mol\;m^{-2}\;s^{-1}$이었다. 광도 $100\;{\mu}mol\;m^{-2}\;s^{-1}$에서 광합성의 최적온도는 $25^{\circ}C$이었다. 이산화탄소 보상점은 67 vpm이었고, 포화점은 707 vpm이었다. 증산량은 광도가 $1750\;{\mu}mol\;m^{-2}\;s^{-1}$까지 그리고 온도가 $18^{\circ}C$에서 $36^{\circ}C$까지 높아질수록 $2\;mmol\;m^{-2}\;s^{-1}$$4\;mmol\;m^{-2}\;s^{-1}$정도로 각각 증가하였으나 이산화탄소 농도가 21 vpm에서 800 vpm으로 높아질 때는 감소하는 경향이었다.

밭작물 소비수량에 관한 기초적 연구(III)-고추 및 가을 무우- (Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (3) -Red Pepper and Radish-)

  • 김철기;김진한;정하우;최홍규;권영현
    • 한국농공학회지
    • /
    • 제32권1호
    • /
    • pp.55-71
    • /
    • 1990
  • The purpose of this study is to find out the basic data for irrigation plans of red pepper and radish during the growing period, such as total amount of evapotranspiration, coefficent of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum ten day evapotranspiration , optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation point with pH1.7-2.0, pF2.1-2.4 and pF2.5-2.8, at soil texture of sandy soil, sandy loam and silty clay for both red pepper and radish, with two replications. The results obtained are summarized as follows. 1.1/10 exceedance probability values of maximum total pan evaporation during growing period for red peppr and radish were shown as 663.6 mm and 251.8 mm. respectively, and those of maximum ten day pan evaporation for red pepper and radish, 67.1 mm and 46.9 mm, respectively. 2.The time that annual maximum of ten day pan evaporation can he occurred, exists at any stage between the middle of May and the late of August for red pepper, and at any stage between the late of August and the late September for radish. 3.The magnitude of evapotranspiration and its coefficient for red pepper was occurred large in order of pF1.7-2.0 pF2.1-2.4 and pF2.5~2.8 in aspect of irrigation point and the difference in the magnitude of evapotranspiration and of its coefficient between levels of irrigation point was difficult to be found out due to the relative increase in water consumption resulted from large flourishing growth at the irrigation point in lower water content for radish. In aspect of soil texture they were appeared large in order of sandy loam, silty clay and sandy soil for both red pepper and radish. 4.The magnitude of leaf area index was shown large in order of pF2.1-2.4, pF2.5-2.8, and pFl.7-2.0, for red pepper and of pF2.5-2.8, pF2.1-2.4, pFl.7-2.0 for radish in aspect of irrigation point, and large in order of sandy loam, silty clay, sandy soil for both red pepper and radish in aspect of soil texture 5.1/10 exceedance probability value of evapotranspiration and its coefficient during the growing period for red pepper were shown as 683.5 mm and 1.03, respectively, while those of radish, 250.3 mm and 0, 99. respectively. 6.The time that the maximum evapotranspiration of red pepper can be occurred is in the middle of August around the date of ninetieth to hundredth after transplanting, and the time for radish is presumed to be in the late of September, around the date of thirtieth to fourtieth after sowing. At that time, 1/10 exceedance probability value of ten day evapotranspiration and its coefficient for red pepper is assumed to be 81.8 mm and 1.22, respectively, while those of radish, 49, 7 mm and 1, 06, respectively. 7.Optimum irrigation point for red pepper on the basis of the yield of raw matter is assumed to be pFl.7-2.0 for sandy soil, pF2.5-2.8 for sandy loam, and pF2.1-2.4 for silty clay. while that for radish is appeared to be pF2.5-2.8 in any soil texture used. 8.The soil moisture extraction patterns of red pepper and radish have shown that maximum extraction rates exist at 7 cm deep layer at the beginning stage of growth in any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates have shown tendency to be greatest at 21cm deep layer from the most flourishing stage of growth for red pepper and at the last stage of growth for radish. 9.The total readily available moisture on the basic of the optimum irrigation point become 3.77-8.66 mm for sandy soil, 28.39-34.67 mm for sandy loam and 18.40-25.70 mm for silty clay for red pepper of each soil texture used but that of radish that has shown the optimum irrigation point of pF2.5-2.8 in any soil texture used. 12.49-15.27 mm for sandy soil, 23.03-28.13 mm for sandy loam, and 22.56~27.57 mm for silty clay. 10.On the basis of each optimum irrigation point. the intervals of irrigation date at the growth stage of maximum consumptive use of red pepper become l.4 days for sandy soil, 3.8 days for sandy loam and 2.6 days for silty clay, while those of radish, about 7.2 days.

  • PDF