• 제목/요약/키워드: Optimum Design Variable

검색결과 300건 처리시간 0.041초

The Dyeability and Antibacterial Activity of Wool Fabric Dyed with Cochineal

  • Bae, Jung-Sook;Huh, Man-Woo
    • 한국염색가공학회지
    • /
    • 제18권5호
    • /
    • pp.22-29
    • /
    • 2006
  • The purpose of this study was to investigate the dyeability and antibacterial activity on wool fabric dyed with cochineal at variable dyeing conditions. Al, Cr, Fe, Cu and Sn were used as mordants and adsorption was compared with different mordanting methods. The optimum dyeing conditions of wool fabrics were dyeing concentration 2.0%(o.w.s), dyeing temperature $60^{\circ}C$, pH 3 and dyeing time 30 minutes. The pre-mordanting method was preferred for Al and Cr, and the post-mordanting one was preferred for Cu, Sn and Fe to achieve better dyeing. The optimum mordanting conditions of wool fabrics dyed with cochineal were mordanting concentration of 1%(o.w.s), mordanting temperature $60^{\circ}C$, and dyeing time 30 minutes. Wool fabrics dyed with cochineal showed a little antibacterial activity, but it was increased by Cu and Sn mordanting. The light fastness and perspiration fastness of wool fabric treated with cochineal were improved by mordanting.

고정된 핀 바닥 높이에 기준한 기하학적 비대칭 사다리꼴 핀의 최적 설계 (Optimum Design of a Geometrically Asymmetric Trapezoidal Fin Based on the Fixed Fin Base Height)

  • 강형석
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.81-87
    • /
    • 2008
  • A geometrically asymmetric trapezoidal fin with variable fin base thickness and height is optimized based on the fixed fin base height using a one-dimensional analytic method. The temperature profile along the normalized X position in the fin is presented. For the fixed fin base height, the optimum heat loss, fin length and efficiency as a function of inside fluid convection characteristic number, fin base thickness and height, fin shape factor, convection characteristic numbers ratio and ambient convection characteristic number are represented. One of the results shows that the effect of fin base height and ambient convection characteristic number on the optimum values is remarkable.

발전소 통풍계통의 가변속 운전을 위한 최적 설계조건에 관한 연구 (Study on Optimum Design Condition for Variable Speed Control of Rated Speed Fans used in a Power Plant)

  • 조철환;양경현;정남근;김봉진
    • 동력기계공학회지
    • /
    • 제14권5호
    • /
    • pp.30-35
    • /
    • 2010
  • Recently, the large capacity draft fans in power plants had been changed to variable speed type to educe the power consumption. But the fan experienced the unexpected vibration at specific speed regions. In this study, the high vibration frequency of the fan was confirmed and the natural frequency of the rotor were measured and analyzed by FEM programs. It was analyzed that the vibration was caused by the resonance at the frequency, 30.7Hz. So, the rotor vibration characteristic was changed by adjusting the distance between the shaft bearings. It was conformed the high vibration was disappeared over the all operation speeds.

Optimization Shape of Variable-Capacitance Micromotor Using Seeker Optimization Algorithm

  • Ketabi, Abbas;Navardi, Mohammad Javad
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.212-220
    • /
    • 2012
  • In the current paper, the optimization shape of a polysilicon variable-capacitance micromotor (VCM) was determined using the seeker optimization algorithm (SOA). The optimum goal of the algorithm was to find the maximum torque value and minimum ripple torque by varying the geometrical parameters. The optimization process was performed using a combination of SOA and the finite-element method (FEM). The fitness value was calculated via FEM analysis using COMSOL3.4, and SOA was realized by MATLAB7.4. The proposed method was applied to a VCM with eight and six poles at the stator and rotor, respectively. For comparison, this optimization was also performed using the genetic algorithm. The results show that the optimized micromotor using SOA had a higher torque value and lower torque ripple, indicating the validity of this methodology for VCM design.

이중 공동의 고유 주파수 최대/최소화를 위한 위상 최적화 기반 격벽 설계 (Topology-optimization-based Partition Design for Maximizing or Minimizing the Eigenfrequency of a Double Cavity)

  • 이진우;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제18권11호
    • /
    • pp.1118-1127
    • /
    • 2008
  • The position and size of holes in the partition of a double cavity are known to strongly affect the eigenfrequency of the longitudinal eigenmodes of the double cavity. To maximize or minimize the eigenfrequency of the hole-partitioned double cavity, two acoustical topology optimization problems are formulated and solved. While two sub-cavities are filled with air, a partition between them is assumed to consist of sub-partitions of variable acoustical properties. One design variable is assigned to each sub-partition, whose material properties are interpolated as those of an intermediate material between air and a rigid body. The penalty parameter of the used interpolation function is adjusted to obtain a distinct air and rigid body distribution at the converged stage in each acoustical topology optimization problem. A special attention is paid to the selection of initial values of design variables to obtain solutions as close to global optimum and symmetric as possible. To show numerical characteristics of these optimization problems, the formulated problems are first solved for the one-dimensional partition design domain and then for the two-dimensional partition design domain.

유전적 알고리즘과 직접탐색법의 결합에 의한 효율적인 최적화방법에 관한 연구 (A Study on the Efficient Optimization Method by Coupling Genetic Algorithm and Direct Search Method)

  • 이동곤;정성재;김수영
    • 대한조선학회논문집
    • /
    • 제31권3호
    • /
    • pp.12-18
    • /
    • 1994
  • 공학설계에 있어서 최적해를 얻기 위한 방법중의 하나로 최적화방법이 많이 사용되어 왔으나, 기존의 최적화방법에서는 설계점이 국부 최적점으로 빠져 들어갈 경우 그 영역을 벗어날 수 있는 방법이 없기 때문에, 최적화의 초기점을 달리하여 반복계산을 수행하여야 하는 불편한 점이 있었다. 유전적 알고리즘은 기존의 최적화방법에 비하여 다수의 설계점을 동시에 탐색하는 특성이 있어 국부 최적점에 빠질 가능성이 적은 반면, 계산시간이 많이 소요되고 전체 최적점 근처까지는 잘 수렴하나 정확한 최적점을 잘 찾지 못하는 한계가 있다. 본 연구에서는 유전적 알고리즘과 직접탐색법을 결합하여 이들의 단점을 보완한 즉, 전체 최적점을 보다 효율적으로 찾고 계산시간을 줄일 수 있는 방법을 제시하였다. 이 방법은 유전적 알고리즘을 이용하여 최적점이 존재하는 영역을 찾은 후에, 그 영역에서 직접탐색법을 이용하여 보다 정확한 최적점을 찾는 것으로, 예제를 통하여 제안된 방법의 유용성을 보였다.

  • PDF

Simulations of Effects of Variable Conductance Throttle Valve on the Characteristics of High Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.28-35
    • /
    • 2015
  • Thin film electronic devices which brought the current mobile environment could be fabricated only under the high quality vacuum conditions provided by high vacuum systems. Especially for the development of advanced thin film devices, constant high quality vacuum as the deposition pressure is definitely needed. For this purpose, the variable conductance throttle valves were employed to the high vacuum system. In this study, the effects of throttle valve applications on vacuum characteristics were simulated to obtain the optimum design modelling of variable conductance of high vacuum system. Commercial simulator of vacuum system, $VacSim^{(multi)}$, was used on this investigation. Reliability of employed simulator was verified by the simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure of below $10^{-3}torr$. Simulation results were plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

3D Optimal Design of Transformer Tank Shields using Design Sensitivity Analysis

  • Yingying Yao;Ryu, Jae-Seop;Koh, Chang-Seop;Dexin Xie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권1호
    • /
    • pp.23-31
    • /
    • 2003
  • A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest descent method with design sensitivity and mesh relocation method. For the design sensitivity formula, the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy current problems. A new 3D mesh relocation method is also proposed using the deformation theory of the elastic body under stress to renew the mesh as the shape changes. The design sensitivity f3r the sur-face nodal points is also systematically converted into that for the design variables for the parameterized optimization application. The proposed algorithm is applied to the optimum design of the tank shield model of the transformer and the effectiveness is proved.

차량 현가장치의 최적설계 (Optimal Design of Vehicle Suspension System)

  • 탁태오;정성훈
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.43-50
    • /
    • 1999
  • Vehicle suspensions can be regarded as interconnection of rigid bodies with kinematic joints and compliance elements such as springs, bushings, and stabilizers. Design of a suspension system requires detailed specification of the interconnection point (or so called hard points) and characteristic values of compliance elements. During the design process, these design variables are determined to meet some prescribed performance targets expressed in terms of SDFs (Static Design Factors), such as toe, camber, compliance steer, etc. This paper elaborates on a systematic approach to achieve optimum design of suspension systems.

  • PDF

실험계획법을 이용한 측면 에어백 인플레이터 최적 설계 (Optimizing Design of Side Airbag Inflator using DOE Method)

  • 김병우;허진
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1189-1195
    • /
    • 2011
  • For side airbag, the pipe type inflators have been wide used while the disk type inflators have been used for front airbag. For helping to prevent injury and death the airbag inflator system should be design with great care. The present study deal with optimizing the design of side airbag inflator by finite element analysis and design of experiment method. An optimization process was integrated to determine the optimum design variable values related to the side airbag inflator. Free shape optimization method has been carried out to find a optimal shape on an side airbag inflator model. Optimization of the air bag inflator was successfully developed using Sharpe optimization was carried out to find a new geometry. The improved results compared to the base design specification were achieved from design of experiment and optimization.