• Title/Summary/Keyword: Optimized algorithm

Search Result 1,808, Processing Time 0.028 seconds

Geometry optimization of a double-layered inertial reactive armor configured with rotating discs

  • Bekzat Ajan;Dichuan Zhang;Christos Spitas;Elias Abou Fakhr;Dongming Wei
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.309-325
    • /
    • 2023
  • An innovative inertial reactive armor is being developed through a multi-discipline project. Unlike the well-known explosive or non-explosive reactive armour that uses high-energy explosives or bulging effect, the proposed inertial reactive armour uses active disc elements that is set to rotate rapidly upon impact to effectively deflect and disrupt shaped charges and kinetic energy penetrators. The effectiveness of the proposed armour highly depends on the tangential velocity of the impact point on the rotating disc. However,for a single layer armour with an array of high-speed rotating discs, the tangential velocity is relatively low near the center of the disc and is not available between the gap of the discs. Therefore, it is necessary to configure the armor with double layers to increase the tangential velocity at the point of impact. This paper explores a multi-objective geometry design optimization for the double-layered armor using Nelder-Mead optimization algorithm and integration tools of the python programming language. The optimization objectives include maximizing both average tangential velocity and high tangential velocity areas and minimizing low tangential velocity area. The design parameters include the relative position (translation and rotation) of the disc element between two armor layers. The optimized design results in a significant increase of the average tangential velocity (38%), increase of the high tangential velocity area (71.3%), and decrease of the low tangential velocity area (86.2%) as comparing to the single layer armor.

Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent (합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계)

  • Chang-Wook Han;Don-Kyu Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.13-17
    • /
    • 2024
  • In this paper, union-based rule antecedent neuro-fuzzy controller, which can guarantee a parsimonious knowledge base with reduced number of rules, is proposed. The proposed neuro-fuzzy controller allows union operation of input fuzzy sets in the antecedents to cover bigger input domain compared with the complete structure rule which consists of AND combination of all input variables in its premise. To construct the proposed neuro-fuzzy controller, we consider the multiple-term unified logic processor (MULP) which consists of OR and AND fuzzy neurons. The fuzzy neurons exhibit learning abilities as they come with a collection of adjustable connection weights. In the development stage, the genetic algorithm (GA) constructs a Boolean skeleton of the proposed neuro-fuzzy controller, while the stochastic reinforcement learning refines the binary connections of the GA-optimized controller for further improvement of the performance index. An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation and experiment.

High Quality Multi-Channel Audio System for Karaoke Using DSP (DSP를 이용한 가라오케용 고음질 멀티채널 오디오 시스템)

  • Kim, Tae-Hoon;Park, Yang-Su;Shin, Kyung-Chul;Park, Jong-In;Moon, Tae-Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This paper deals with the realization of multi-channel live karaoke. In this study, 6-channel MP3 decoding and tempo/key scaling was operated in real time by using the TMS320C6713 DSP, which is 32 bit floating-point DSP made by TI Co. The 6 channel consists of front L/R instrument, rear L/R instrument, melody, and woofer. In case of the 4 channel, rear L/R instrument can be replaced with drum L/R channel. And the final output data is generated as adjusted to a 5.1 channel speaker. The SOLA algorithm was applied for tempo scaling, and key scaling was done with interpolation and decimation in the time domain. Drum channel was excluded in key scaling by separating instruments into drums and non-drums, and in processing SOLA, high-quality tempo scaling was made possible by differentiating SOLA frame size, which was optimized for real-time process. The use of 6 channels allows the composition of various channels, and the multi-channel audio system of this study can be effectively applied at any place where live music is needed.

A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas (농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.26-41
    • /
    • 2012
  • It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.

A Study on Real-time Tracking Method of Horizontal Face Position for Optimal 3D T-DMB Content Service (지상파 DMB 단말에서의 3D 컨텐츠 최적 서비스를 위한 경계 정보 기반 실시간 얼굴 수평 위치 추적 방법에 관한 연구)

  • Kang, Seong-Goo;Lee, Sang-Seop;Yi, June-Ho;Kim, Jung-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.88-95
    • /
    • 2011
  • An embedded mobile device mostly has lower computation power than a general purpose computer because of its relatively lower system specifications. Consequently, conventional face tracking and face detection methods, requiring complex algorithms for higher recognition rates, are unsuitable in a mobile environment aiming for real time detection. On the other hand, by applying a real-time tracking and detecting algorithm, we would be able to provide a two-way interactive multimedia service between an user and a mobile device thus providing a far better quality of service in comparison to a one-way service. Therefore it is necessary to develop a real-time face and eye tracking technique optimized to a mobile environment. For this reason, in this paper, we proposes a method of tracking horizontal face position of a user on a T-DMB device for enhancing the quality of 3D DMB content. The proposed method uses the orientation of edges to estimate the left and right boundary of the face, and by the color edge information, the horizontal position and size of face is determined finally to decide the horizontal face. The sobel gradient vector is projected vertically and candidates of face boundaries are selected, and we proposed a smoothing method and a peak-detection method for the precise decision. Because general face detection algorithms use multi-scale feature vectors, the detection time is too long on a mobile environment. However the proposed algorithm which uses the single-scale detection method can detect the face more faster than conventional face detection methods.

Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm ((2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jin, Yong-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.

A Design of PRESENT Crypto-Processor Supporting ECB/CBC/OFB/CTR Modes of Operation and Key Lengths of 80/128-bit (ECB/CBC/OFB/CTR 운영모드와 80/128-비트 키 길이를 지원하는 PRESENT 암호 프로세서 설계)

  • Kim, Ki-Bbeum;Cho, Wook-Lae;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1163-1170
    • /
    • 2016
  • A hardware implementation of ultra-lightweight block cipher algorithm PRESENT which was specified as a standard for lightweight cryptography ISO/IEC 29192-2 is described. The PRESENT crypto-processor supports two key lengths of 80 and 128 bits, as well as four modes of operation including ECB, CBC, OFB, and CTR. The PRESENT crypto-processor has on-the-fly key scheduler with master key register, and it can process consecutive blocks of plaintext/ciphertext without reloading master key. In order to achieve a lightweight implementation, the key scheduler was optimized to share circuits for key lengths of 80 bits and 128 bits. The round block was designed with a data-path of 64 bits, so that one round transformation for encryption/decryption is processed in a clock cycle. The PRESENT crypto-processor was verified using Virtex5 FPGA device. The crypto-processor that was synthesized using a $0.18{\mu}m$ CMOS cell library has 8,100 gate equivalents(GE), and the estimated throughput is about 908 Mbps with a maximum operating clock frequency of 454 MHz.

Quality Control of Observed Temperature Time Series from the Korea Ocean Research Stations: Preliminary Application of Ocean Observation Initiative's Approach and Its Limitation (해양과학기지 시계열 관측 자료 품질관리 시스템 구축: 국제 관측자료 품질관리 방안 수온 관측 자료 시범적용과 문제점)

  • Min, Yongchim;Jeong, Jin-Yong;Jang, Chan Joo;Lee, Jaeik;Jeong, Jongmin;Min, In-Ki;Shim, Jae-Seol;Kim, Yong Sun
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.195-210
    • /
    • 2020
  • The observed time series from the Korea Ocean Research Stations (KORS) in the Yellow and East China Seas (YECS) have various sources of noise, including bio-fouling on the underwater sensors, intermittent depletion of power, cable leakage, and interference between the sensors' signals. Besides these technical issues, intricate waves associated with background tidal currents tend to result in substantial oscillations in oceanic time series. Such technical and environmental issues require a regionally optimized automatic quality control (QC) procedure. Before the achievement of this ultimate goal, we examined the approach of the Ocean Observatories Initiative (OOI)'s standard QC to investigate whether this procedure is pertinent to the KORS. The OOI QC consists of three categorized tests of global/local range of data, temporal variation including spike and gradient, and sensor-related issues associated with its stuck and drift. These OOI QC algorithms have been applied to the water temperature time series from the Ieodo station, one of the KORS. Obvious outliers are flagged successfully by the global/local range checks and the spike check. Both stuck and drift checks barely detected sensor-related errors, owing to frequent sensor cleaning and maintenance. The gradient check, however, fails to flag the remained outliers that tend to stick together closely, as well as often tend to mark probably good data as wrong data, especially data characterized by considerable fluctuations near the thermocline. These results suggest that the gradient check might not be relevant to observations involving considerable natural fluctuations as well as technical issues. Our study highlights the necessity of a new algorithm such as a standard deviation-based outlier check using multiple moving windows to replace the gradient check and an additional algorithm of an inter-consistency check with a related variable to build a standard QC procedure for the KORS.

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.

A Study on the Optimal Design of Reinforced Concrete Frames Using SUMT (SUMT 법(法)을 이용(利用)한 철근(鐵筋)콘크리트 뼈대구조물(構造物)의 최적설계(最適設計)에 관한 연구(研究))

  • Jung, Young Chae;Lee, Qyu Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.27-48
    • /
    • 1984
  • This study is conserned with the optimization of reinforced concrete frames using limit state design theory. Formulations of the optimal design for reinforced concrete frame based on the limit state theory turn out to be the nonlinear programming problems which have to deal with the required steel area, the width and effective height of the beam and column section and the moment reduction factor as the design variables. The objective function is formulated as the total construction cost which considers the costs of steel, concrete and forming for the reinforced concrete frames, and the basic constraints are imposed upon both ultimate and serviciability limit state concepts. Also, the stress blocks assumpted in CP110 and Hognestad et al. theory are applied to analysis an ultimate resistant section force for the ultimate limit state and only the criteria of CP110 are used for serviciability limit state. The optimized technique which is applied to solve the nonlinear programming problems for the optimization of reinforced concrete frames is SUMT utilizing the modified Newton-Raphson method. This algorithm is used to test for the two reinforced concrete frames, and then is compared and analysized with the numerical results of reference(10) to examine its convergence, applicability and stability under the same conditions. The results of this study are discussed about the economy comparision of the optimal values for CP110 and Hognestad et al., and the applicability, stability, convergence and validity of this algorithm used herein through the numerical analyses.

  • PDF