Browse > Article
http://dx.doi.org/10.12652/Ksce.2019.39.6.0713

Computation of Criterion Rainfall for Urban Flood by Logistic Regression  

Kim, Hyun Il (Kyungpook National University)
Han, Kun Yeun (Kyungpook National University)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.39, no.6, 2019 , pp. 713-723 More about this Journal
Abstract
Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.
Keywords
Urban flood; Rainfall criterion; Genetic algorithm; Logistic regression;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Abanco, C., Hurlimann, M., Moya, J. and Berenguer, M. (2016). "Critical rainfall conditions for the initiation of torrential flows. result from the rebaixader catchment (central pyrenees)." Journal of Hydrology, Vol. 541, pp. 218-229.   DOI
2 Cho, J. H. and Lee, J. H. (2006). "Parameter optimization for runoff calibration of SWMM." Journal of Environmental Impact Assessment, Vol. 15, No. 6, pp. 435-441 (in Korean).
3 Cho, J. W., Bae, C. Y. and Kang, H. S. (2018). "Development and application of urban flood alert criteria considering damage records and runoff characteristics." J. Korea Water Resour. Assoc., KWRA, Vol. 51, No. 1, pp. 1-10 (in Korean).   DOI
4 Gardner, K. K. and Vogel, R. M. (2005). "Predicting ground water nitrate concentration from land use." Ground Water, Vol. 43, No. 3, pp. 343-352.   DOI
5 Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C. P. (2007). "Rainfall thresholds for the initiation of landslides in central and southern europe." Meteorology and Atmospheric Physics, Vol. 98, pp. 239-267.   DOI
6 Huber, W. C. and Dickson, R. E. (1988). Storm water management model. user's manual ver. 4, U.S. EPA, Georgia, USA.
7 Ji, H. S., Lee, B. J, Bae, H. D., Lee, C. K. and Jung, H. S. (2013). "Development of criterion rainfall estimation methodology in each grid for sudden flood prediction." Journal of Korean Meteorological Society, Vol. 10, pp. 248-249.
8 Kim, Y. R. (2015). Seoul flood control policy. Seoul Policy Archive, Available at: https://seoulsolution.kr (in Korean).
9 Korea Meteorological Agency (2019). Meteorological database. Available at: https://data.kma.go.kr (Accessed: July 4, 2019).
10 Lee, S. H., Kang, D. H. and Kim, B. S. (2018). "A study on the method of calculating the threshold rainfall for rainfall impact forecasting." J. Korean Soc. Hazard Mitig., KSHM, Vol. 18, No. 7, pp. 93-102 (in Korean).   DOI
11 Lim, J. T. and Kim, B. H. (2019). "Modeling for debris flow behavior on expressway using FLO-2D." J. Korean Soc. Civ. Eng., KSCE, Vol. 39, No. 2, pp. 263-272 (in Korean).   DOI
12 Pradhan, B. (2009). "Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing." Journal of Spatial Hydrology, Vol. 9, No. 2, pp. 1-18.
13 Liong, S. Y., Chan, W. T. and Ram, S. J. (1995). "Peak flow forecasting with genetic algorithm and SWMM." Journal of Hydraulic Engineering, ASCE, Vol. 121, No. 8, pp. 613-617.   DOI
14 Ministry of the Interior and Safety (MOIS) (2017). Report on disaster performance goal of rainfall made climate change (in Korean).
15 Ministry of the Interior and Safety (MOIS) (2019). Information open portal. Flood trace data. Available at: https://www.open.go.kr (Accessed: July 10, 2019).
16 Nandi, A., Mandal, A., Wilson, M. and Smith, D. (2016). "Flood hazard mapping in Jamaica using principal component analysis and logistic regression." Environment Earth Science, Vol. 75, No. 465.
17 Ozdemir, A. (2011). "Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)." Journal of Hydrology, Vol. 405, No. 1-2, pp. 123-136.   DOI
18 Seo, K. W. and Cho, W. C. (1998). "The sensitivity analysis of parameters of urban runoff models due to variations of basin characteristics (I)." J. Korea Water Resour. Assoc., KWRA,Vol. 31, No, 3, pp. 243-252 (in Korean).
19 Seoul Metropolitan City (2015). Comprehensive plan for storm and flood damage reduction, Korea, Vol. 1, Chapter 3, pp. 374-375 (in Korean).
20 Shin, S. Y., Yeo, C. G., Baek, C. H. and Kim, Y. J. (2005). "Mapping inundation areas by flash flood and developing rainfall standards for evacuation in urban settings." Journal of the Korean Association of Geographic Information Studies, Vol. 8, No. 4, pp. 71-80.
21 United States Environmental Protection Agency (EPA) (2010). Storm water management model user's manual version 5.0. Environmental Protection Agency, United States.
22 Son, A. L., Kim, B. H. and Han, K. Y. (2015). "A study on prediction of inundation area considering road network in urban area." J. Korean Soc. Civ. Eng., KSCE, Vol. 35, No. 2, pp. 307-318 (in Korean).   DOI
23 Song, Y. H., Song, Y. S., Park, M. J. and Lee, J. H. (2014). "Flood forecasting estimation methodology of standard rainfall for urban mid and small rivers considering upper- and down-stream water levels." J. Korean Soc. Hazard Mitig., KSHM, Vol. 14, No. 2, pp. 289-298.   DOI
24 Tayfur, G. (2012). Soft computing in water resources engineering, WIT Press, Southampton, Boston.