• Title/Summary/Keyword: Optimization program

Search Result 1,068, Processing Time 0.025 seconds

Visual SLAM using Local Bundle Optimization in Unstructured Seafloor Environment (국소 집단 최적화 기법을 적용한 비정형 해저면 환경에서의 비주얼 SLAM)

  • Hong, Seonghun;Kim, Jinwhan
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 2014
  • As computer vision algorithms are developed on a continuous basis, the visual information from vision sensors has been widely used in the context of simultaneous localization and mapping (SLAM), called visual SLAM, which utilizes relative motion information between images. This research addresses a visual SLAM framework for online localization and mapping in an unstructured seabed environment that can be applied to a low-cost unmanned underwater vehicle equipped with a single monocular camera as a major measurement sensor. Typically, an image motion model with a predefined dimensionality can be corrupted by errors due to the violation of the model assumptions, which may lead to performance degradation of the visual SLAM estimation. To deal with the erroneous image motion model, this study employs a local bundle optimization (LBO) scheme when a closed loop is detected. The results of comparison between visual SLAM estimation with LBO and the other case are presented to validate the effectiveness of the proposed methodology.

Design of GBSB Neural Network Using Solution Space Parameterization and Optimization Approach

  • Cho, Hy-uk;Im, Young-hee;Park, Joo-young;Moon, Jong-sup;Park, Dai-hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 2001
  • In this paper, we propose a design method for GBSB (generalized brain-state-in-a-box) based associative memories. Based on the theoretical investigation about the properties of GBSB, we parameterize the solution space utilizing the limited number of parameters sufficient to represent the solution space and appropriate to be searched. Next we formulate the problem of finding a GBSB that can store the given pattern as stable states in the form of constrained optimization problems. Finally, we transform the constrained optimization problem into a SDP(semidefinite program), which can be solved by recently developed interior point methods. The applicability of the proposed method is illustrated via design examples.

  • PDF

Study on Shape Optimization Using Finite Elements Addition and Removal (요소가감법을 이용한 형상최적설계에 관한 연구)

  • Kim, Young-Jin;Lim, Kyeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.486-491
    • /
    • 2000
  • In this study, finite elements addition and removal method by stress range is applied to optimize shapes in structures, without using classical and numerical optimization methods and search methods. The program based on this algorithm is developed and compared to theoritial results with considerable accuracy. Classical methods need mesh generation for finite element analysis for every iteration, the developed method needs updated mesh data such as coordinates of nodes, elements connectivity, and loads on nodes. And other tools of finite element analysis can be in use as a black box to interface with this program.

  • PDF

A Robust Joint Optimal Pricing and Lot-Sizing Model

  • Lim, Sungmook
    • Management Science and Financial Engineering
    • /
    • v.18 no.2
    • /
    • pp.23-27
    • /
    • 2012
  • The problem of jointly determining a robust optimal bundle of price and order quantity for a retailer in a single-retailer, single supplier, single-product supply chain is considered. Demand is modeled as a decreasing power function of product price, and unit purchasing cost is modeled as a decreasing power function of order quantity and demand. Parameters defining the two power functions are uncertain but their possible values are characterized by ellipsoids. We extend a previous study in two ways; the purchasing cost function is generalized to take into account the economies of scale realized by higher product demand in addition to larger order quantity, and an exact transformation into an equivalent convex optimization program is developed instead of a geometric programming approximation scheme proposed in the previous study.

Vibration reduction of forklift truck using optimization of engine mount layout (마운트 배치 최적화를 통한 지게차 엔진 진동 저감)

  • Kim, Younghyun;Kim, Kyutae;Lee, Wontae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.787-791
    • /
    • 2013
  • The engine excitation forces are considered as major vibration source for the forklift truck, especially in small class. Even though the current engine mounting system designs are acceptable for vibration isolation, the performance of the engine mounting system is still required for the tendency of light weight, higher power and driver's higher vibration requirement. In this paper vibration reduction technique of forklift engine which is supported on rubber mounts is presented. Based on the dynamic model of resilient engine mounting system, design evaluation program is established. The design optimization technique and evaluation method of system properties are discussed. Effects of optimal design are validated through comparison with test results.

  • PDF

Optimum design of cable-stayed bridges

  • Long, Wenyi;Troitsky, Michael S.;Zielinski, Zenon A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.241-257
    • /
    • 1999
  • This paper presents a procedure to minimize the cost of materials of cable-stayed bridges with composite box girder and concrete tower. Two sets of iterations are included in the proposed procedure. The first set of iteration performs the structural analysis for a cable-stayed bridge. The second set of iteration performs the optimization process. The design is formulated as a general mathematical problem with the cost of the bridge as the objective function and bending forces, shear forces, fatigue stresses, buckling and deflection as constraints. The constraints are developed based on the Canadian National Standard CAN/CSA-S6-88. The finite element method is employed to perform the complicated nonlinear structural analysis of the cable-stayed bridges. The internal penalty function method is used in the optimization process. The limit states design method is used to determine the load capacity of the bridge. A computer program written in FORTRAN 77 is developed and its validity is verified by several practical-sized designs.

Parameter Optimization for Runoff Calibration of SWMM (SWMM의 유출량 보정을 위한 매개변수 최적화)

  • Cho, Jae-Heon;Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.435-441
    • /
    • 2006
  • For the calibration of rainfall-runoff model, automatic calibration methods are used instead of manual calibration to obtain the reliable modeling results. When mathematical programming techniques such as linear programming and nonlinear programming are applied, there is a possibility to arrive at the local optimum. To solve this problem, genetic algorithm is introduced in this study. It is very simple and easy to understand but also applicable to any complicated mathematical problem, and it can find out the global optimum solution effectively. The objective of this study is to develope a parameter optimization program that integrate a genetic algorithm and a rainfall-runoff model. The program can calibrate the various parameters related to the runoff process automatically. As a rainfall-runoff model, SWMM is applied. The automatic calibration program developed in this study is applied to the Jangcheon watershed flowing into the Youngrang Lake that is in the eutrophic state. Runoff surveys were carried out for two storm events on the Jangcheon watershed. The peak flow and runoff volume estimated by the calibrated model with the survey data shows good agreement with the observed values.

A Study on the Optimum Design of Air-Conditioning Duct with Multiple Diffusers (다수의 취출구를 갖는 A/C덕트의 최적설계에 관한 연구)

  • 김민호;이대훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.98-106
    • /
    • 2002
  • The airflow characteristics of an air-conditioning duct with multiple diffusers were investigated through one-dimensional analysis, CFD simulation and experimental measurement. One-dimensional program based on Bernoulli's equation and minor loss equations was developed in order to evaluate the air distribution rate at each diffuser. In CFD simulation, three-dimensional flow characteristics inside air-conditioning duct were computed for incompressible viscous flow, adopting the RNG k-$\xi$turbulence model. Also, in an effort to equalize the discharge flow rate at each outlet, the optimization procedure has been performed to obtain the optimum diffuser area. In this process, square of difference between maximum discharge rate and minimum discharge rate is used as an object function. Diffuser area and discharge velocity are established as constraints. After optimization process, determined design variables are applied again in CFD simulation and experiment to validate the optimized result by one-dimensional program. Comparison with the experimental data of airflow rate distribution showed that the developed program seems to be acceptable and can be useful design tool for an automotive air-conditioning duct in an initial design stage.

A New Multiplex-PCR for Urinary Tract Pathogen Detection Using Primer Design Based on an Evolutionary Computation Method

  • Garcia, Liliana Torcoroma;Cristancho, Laura Maritza;Vera, Erika Patricia;Begambre, Oscar
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1714-1727
    • /
    • 2015
  • This work describes a new strategy for optimal design of Multiplex-PCR primer sequences. The process is based on the Particle Swarm Optimization-Simplex algorithm (Mult-PSOS). Diverging from previous solutions centered on heuristic tools, the Mult-PSOS is selfconfigured because it does not require the definition of the algorithm's initial search parameters. The successful performance of this method was validated in vitro using Multiplex-PCR assays. For this validation, seven gene sequences of the most prevalent bacteria implicated in urinary tract infections were taken as DNA targets. The in vitro tests confirmed the good performance of the Mult-PSOS, with respect to infectious disease diagnosis, in the rapid and efficient selection of the optimal oligonucleotide sequences for Multiplex-PCRs. The predicted sequences allowed the adequate amplification of all amplicons in a single step (with the correct amount of DNA template and primers), reducing significantly the need for trial and error experiments. In addition, owing to its independence from the initial selection of the heuristic constants, the Mult-PSOS can be employed by non-expert users in computational techniques or in primer design problems.

Optimization of Stand-Alone Hybrid Power Systems Using HOMER Program (HOMER 프로그램을 이용한 독립형 하이브리드 발전시스템 최적화)

  • Yang, Su-Hyung;Boo, Chang-Jin;Kim, Ho-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • Diesel fuel is expensive because transportation to remote areas adds extra cost, and it causes air pollution by engine exhaust. Providing a feasible economical and environmental solution to diesel generators is important. A hybrid system of renewable plants and diesel generators can benefit islands or other isolated communities and increase fuel savings. Renewable energy is, however, a natural source that produces a fluctuating power output. In this paper, hybrid power system of the marado lighthouse is proposed to supply stable power in the stand-alone hybrid power system. The proposed hybrid power system consists of the diesel generator, wind turbine, photovoltaic, fuel cell, and battery bank. To decrease the carbon emissions and find the optimization, the cost analysis of hybrid system is simulated using HOMER program and the optimized hybrid power system is designed.