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Abstract

In this paper, we propose a design method for GBSB (gencralized brain-state-in-a-box) based

associative memories. Based on the

theoretical investigation about the properties of GBSB, we parameterize the solution space utilizing the limited number of paramelers
sufficient to represent the solution space and appropriate to be scarched. Next we formulate the problem of finding a GBSB that can
store the given patlern as stable states in the form of constrained optimization problems. Finally, we transform the constrained
optimization problem inlo a SDP(semidefinite program), which can be solved by recently developed interior point methods. The
applicability of the proposed method is illustrated via design examples.
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| . Introduction

Reinvigoration of neural associative memories have
been credited to Hopfield [1], who showed how fully
interconnected feedback neural networks, trained by the
Hebbian learning rule, can associatively recall stored
binary patterns. Since then, several neural network
models have been successfully introduced to synthesize
suitable associative memories [2]. There have also been
many studies on how well they perform as associative
memories. In general, the desirable characterstics
emphasized in the performance evaluation of given neural
associative memories include the following [2-4]; an
asymptotic stability of each prototype pattern; a minimal
number of spurious states; a non-symmetric inter-
commection structure; the ability to control the extent of
the basin of affraction; an incremental learning and
forgetting capability; a high storage and retdeval effi-
ciency; a global stability.

Among the various types of promising neural models
that show good performance, are the so-called BSB
(brain-state-in-a-box). This model was first proposed by
Anderson et al. in 1977 [5], and has been regarded as
particularly  guitable for implementing associative
memories. Its theoretical aspects, especially stability
issues, are now well documented: Cohen and Grossberg
[6] proved a theorem on the global stability of the
continuous-time continuous-state BSB dynamical systems
with real symmetric weight matrices. Golden showed that
all trajectories of the discrete-time continuous-state BSB
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dynamical systems with real symmetric weight matrices
approach the set of equilibrium points under certain
conditions |7]. Marcus and Westervelt [8] also reported a
related result for a large class of discrete-time conti-
nuous-state BSB type systems. Perfetti [9], inspired by
Michel et al. [10], analyzed qualitative properties of the
BSB model, and formulated the design of the BSB-based
associative memories as a constrained optimization in the
form of a linear programming with an additional non-
linear constraint. Also, he proposed an ad hoc iterative
algorithm to solve the constrained optimization. In this
paper, we intend to develop a synthesis procedure for
associative memories based on an advanced form of the
BSB model, which is often referred to as GBSB
(generalized BSB). The GBSB model was proposed and
studied by Hui and Zak [11], and is now considered to
be more appropriate for realizing associative memories
than the BSB model in several respects [3,12]. The
GBSB model has been studied extensively as effective
tools for realizing associative memories: Lillo et al. [3]
analyzed the dynamics of the GBSB model, and
presented a novel synthesis procedure for GBSB-based
associalive memories. Their procedure utilizes a de-
composition of interconnection matrix. This results in
asymmetric interconnection structure, asymptotic stability
of the desired memory patterns, and small mumber of
spurious states. Zak et al. [13] incorporated the learning
and forgetting capabilities into the synthesis method in
Lillo's paper [3]. Also, Chan and Zak [12], inspired by
Lillo et al. [3] and Perfetti [9], proposed "designer"

neural network for the synthesis of GBSB-based
associative memories.
Focusing on the reliable search for optimally

performing GBSB neural associative memories, we first
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exploit some qualitative guidelines to synthesize the
GBSB model. Next, on the basis of the weight matrix
expression of Lillo et al. [3], which was systematically
constructed to satisfy several desired properties written
above, we parameterize the solution space utilizing the
limited number of parameters. Consequently, yielding an
associative memory with desired properties of [3], we
intend to ease the increasing complexity along with
increasing the number of parameters in dealing with
large-scale practical problems. Next, we recast the
synthesis of GBSB neural associative memories as two
constrained optimization problems, which are equivalent
to finding a solution to the original synthesis problem.
Finally, we convert the optimization problems into SDPs
(semidefinite programs), which consist of a linear
objective and constraints in the form of LMls (linear
matrix  inequalities). Since efficient interior point
algorithms are now available to solve SDPs (i.e., to find
the global optimum of a given SDP efficiently within a
given tolerance or find a certificate of infeasibility)
[14-16], recasting the synthesis problem to a SDP is
equivalent to finding a solution to the original problem.
In this paper, we use MATLAB LMI Control Toolbox
[15] as an optimum searcher to solve the synthesis
problem formulated as an SDP. The best part of these
strategies is to recast the synthesis problem to SDPs,
which is equivalent to finding a solution to the original
synthesis problem, because the global optimum can be
efficiently found by sophisticated convex optimization
algorithms such as interior-point methods.

This paper is organized as follows: In section II, we
briefly summarize the fundamentals on GBSB model,
stability definitions, already-known results and present
some newly-developed qualitative guidelines to synthesize
the GBSB model. In section III, we formulate the
synthesis of GBSB-based associative memories as two
constrained optimization problems (Parameterization I and
II) via parameterizing solution space and interpreting the
parameterizations; we show how to recast the synthesis
problems to SDPs. In section IV, with the concrete
simulation results from the design experiment, we
compare the performance of the GBSB designed by the
proposed method with the associative memories designed
by other methods. Finally, in section V, the concluding
remarks are given.

I1. Background Results

Throughout this paper the following definitions and
notation are used: R” denotes the normed linear space
of real » vectors with the Euclidean norm || -||. For a
symmetric matrix WeR™”, ||W| denotes the induced
matrix nomm defined by max .ol |Wxll/||x]]. I, denotes
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the identity matrix. H, denotes the closed
hypereube [—1,+1]". Herein a bipolar vector means
that every element is either —1 or +1, and B, denotes
the set of all these bipolar vectors in #H,. HD(v,v")
denotes the usnal Hamming distance between two vectors
veB, and v'=B,. For a matrix VeR™", VieR™ ™"
denotes the usual transpose of V.

The dynamics of the GBSB model is described by the
following state equation:

nxn

wWk+1) = glov(B)+ aWu(k) + ab)
=g[ (I, +aW)u(k)+ ab],

where y(E=R”* is the staie vector at time %, o>( is
the step size, WeR ™" is the weight matrix, p=R™! is
the bias vector, and g:R*"—R" is the piece-wise linear
saturating function whose :-th component is defined as
follows:
+1if p;=+1
v; if —1<p,<{+1
-1 if v;£-1

By modifying the activation function 1o take on values
within the closed »-dimensional hypercube H,, the
GBSB model solves the problem that the overall response
of positive feedback systems may grow without bound.
The GBSB model is a generalized version of the BSB
network proposed by Anderson et al. [5], and it differs
from the original network for the presence of the bias
vector 4.

In the discussion on the stability of the GBSB model,
we use the following definitions [3,17]:
Definition 1. A point »,=R" is an equilibrium point of
the GBSB system if »(0)=v, implies w(B=20,, Vi>0.
Definition 2. An equilibrium point », of the GBSB
system 1s stable if for any &>0, there exists 8>0 such
that

Ho(0) = vl<8 mplies [lo(k) —v.ll<s, VAO.

of the GBSB

system is asymptotically stable if it is stable and there
exists §>( such that

Definition 3. An equilibrium point o,

[12(0) — v |l< 8 implies v(B)—wv, as koo,

Definition 4, The GBSB system is globally stable if
every trajectory of the system converges to some
equilibrium point.

The criteria on the stability of the GBSB model are
now well established in [3,10,18] as follows:
Criteion 1. A vertex » of the hypercube H, is an

equilibrium point of the GBSB system if and only if

<12 W+ bz)viz(), vie{l,--, n}.

Criterion 2. A vertex » of the hypercube H, is an
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asymptotically stable equilibrium point of the GBSB
system if

(]zw,-]vj-l- bi>v,>0, vie{l, -, n}.

In general, the design based only on the stability
criteria does not result in satisfactory associative
memories. Additional guidelines should be provided to
address other performance criteria such as the extent of
domains of attraction for each stored pattern. Perfetti [9]
proposed guidelines for the BSB system based on the
conjecture that the absence of equilibrium points near
stored patterns would increase their domains of attraction,
and the experimental results therein showed that such
strategy was very effective on reducing the number of
spurious states as well as on increasing attraction
domains for stored patterns. With the same strategy, the
GBSB counterpart of Perfetti's theorem [9] can be
obtained [19].

Theorem 1. Suppose that »=B, is an asymptotically

stable equilibrium point of the GBSB system. If w,=0

for {=1,---,n, then none of the vertices »* such that
HD(y,v")=1 is an equilibrium point.

Theorem 2. Suppose that py=p, is an asymptotically
stable equilibrium point of the GBSB system and that %

is an integer in {1, x}. If
(!szjvj+bi>vi>2hrﬂaxl'|w,']|, Yie{l,---,n},

then none of the vertices o satisfying 0<HD(v,v")<h
is an equilibrium point.

Corollary 1. Suppose that v=B, is an asymptotically
stable equilibrium point of the GBSB system and that #
is an integer in {1,--- % If

(Z‘lw,—,z),--% bJod 2RI, Vis (1, m),

then none of the vertices o* satisfying Q<HD(v,v)<h
is an equilibrium point.

Proof: Since max ||w,ll< max ||w;ll is immediate, by the
definition of max element norm defined as
[| W) e == max | wyl, Which is not matrix norm but one
of generalized matrix norms (For details, see [20]), we
can rewrite the right side of Theorem 2 as 24| Wl.
Subsequently, by applying the matrix norm relationships,
W g < | | Wl, We establish the corollary. Note that the
inequality of corollary 1 is a sufficient condition for the
validity of the condition of Theorem 2.

Remark 1. The zero-diagonal condition of Theorem |
also guarantees that only binary steady states are to be
observed [9]. In addition, as concluded in [21], the
zeroing-out diagonal (i.e., no self-feedback connections) is
useful as a general strategy to improve the performance
of existing symmetric Hopficld-type neural networks.
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Remark 2. Theorem 2 (and Corollary 1) implies that the
maximization of the left hand side of the if condition
generally leads to better performance as to the extent of
domains of attraction for each prototype pattern and the
number of spurious states. Furthermore, when the left
hand side of each mequality in Theorem 2 (and Corollary
1) has maximal value and max |, (and [[W]]) in its
right hand side has minimal value, the value of % that
directly controls the attraction domain has maximal value.
Remark 3. The sufficient condition of the Hopfield
counterpart of Theorem 2 was also proposed in Theorem
1 of Tao [22] and Theorem 2 of Tao et al. [23].

lll. Solution Space Parameterizations,
Formulations, and Transformations

In this section, we explain how to parameterize the
solution space of the GBSB model, recast the synthesis
problem to constrained optimization problems, and
formulate them into semidefinite problems.

The expression of the weight matrix in [3] and [13],
which are for the case of the linearly independent
prototype patterns, provides a good starting point for
parameterizing the solution space of the GBSB model,
because it wag systematically constructed to satisfy
several desired properties. The summary of the synthesis
algorithm is as follows: Suppose m prototype patterns
are linearly independent. Let V=[u"--¢"]={—1,+1} ="
be the matrix of given prototypes and V™ denote
pseudo-inverse of ¥ (For details, see [20].).

* ALGORITHM (taken from {13]):

(1) Form the matrix B=[p--bleR™™, where

bzgﬁﬁv(m: e,00, Vo={l,-,m=rank(V)}.
(i1) Form the matrix DeR”” such that

di> 31yl Visll, ),

d11< J_ﬁ'j#zldu'['f'lth VZ‘—:-{l,,n}
(iii) Form the matrix A=R " " such that
hui= B Ad=18), Visllm).

(iv) Compute
W=(DV—-BV' +AU,~— VV7).

(v) Apply criterion 1 to all vertices of H, to
identify spurious equilibria.
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They provide a heuristic explanation as to yield an
interconnection matrix with desired properties, which
includes storing all of the desired patterns as
asymptotically stable equilibria with very few spurious
states, but not automatically storing the negatives of the
desired patterns as asymptotically stable equilibria (For
complete description see [3] and [13]). Note that the
resulted weight matrix is asymmetric and this algorithm
does not guarantee the global stability of the system.

Unfortunately, this algorithm requires us to search
27 +n parameters without providing any methods to get
optimal values of the parameters. Therefore some
concrete  guidelines are required to improve the
applicability to large-scale practical problems while
preserving the desired properties. From this consideration,
we propose the following guidelines by which we can
represent the solution space as the limited number of
parameters and obtain optimal parameter values.

3.1 First SDP-based Synthesis
3.1.1 Parameterization of Solution Space (Parameteriza-
tion I)

As the first step, we pick the bias vector » by the
linear combination of prototype patterns as Chan and Zak
[12] did to direct the trajectories towards the desired
patterns as follows.

b= 28 v,
=8

Next, we substitute the parameter matrices D and A
with

g,=1, Vp={l,-,m}.

371
D= =[rpe " €.,
Tin

34
A=_ ( ‘.. =_[rzlel e TEHEII:I’
Ton
respectively. Finally, by applying 4, D, and A4 to
ALGORITHM, we get the  weight  matrix
(Parameterization I);
W= ([rue * r1.e.]V—BV"
—[mme 120,11~ VVT),
st 0<n<lbl<ry, Vie{l, -, uh
Through this parameterization, we reduce 2x°+ n

parameters to 2z parameters, without losing the desired
properties of ALGORITHM.

3.1.2 Formulation of Parameterization (Formulation I)
As Lillo et al. [3] did, we observe the recall phase
with the linearly independent prototype patterns as
follows:
(I,— VVHV=0 by Moore-Penrose conditions [20]
and a left inverse V' satisfies V'V=I,, »=rank(V).

Therefore, for p-th prototype pattern, we have

WV= (([71191 flnen]V_B)W
_[72181 b TEME”](I"— VW))V
= ([rye Tlneii]V—B)WV
_[Tllel Z—lnen](-[n_ VV‘)V
= [tye = te,]V—BV'V
= [me, - r,e,]V
_[BV-",U(I), BV+U(2), , BV—‘-‘U(m)].
Note that (Lmmer - 11,8, V=BV V and
=[rpe; - Tmen]V—BV'V

Wv(”) =[7.'11€1 e rlnen]z)(f’)-b

()
mop — by
2'192)2(17) bz
( )
Tlnyn - b71

For ;-th element of the p-th prototype pattern, which
is recalled as

(W)= ( i“wuvj(p)) =1, 2P — b,

Therefore each lefi hand side of the inequalities of
Corollary 1 is rewritten as

( ilwuz),”) +b )v

(2,0 — b+ b )l
=r; 0
Note that
parameter closely related to the extent of attraction
domain. With this result, we establish that maximizing
the left hand side of the condition of Theorem 2 means
maximizing the parameter z.:

7; has an important role as a design

=1"wp?+ b,)v,w O,
Vie{l, -, u}, Vo={i, -, m}

Maximize (Z

=~ Maximize r; (00)

Finally, the background results allow us to find the

GBSB performing optimally by solving the first
constrained optimization problem (Formulation I):
Find 7, .7, and zy,--, 0, which maximize 7
st. o 2h|| W, Vis{l,--.n}, (I-1)
W= ([rye, = me, V=BV’ 1-2)
—[oye; =+ mmen )= VV),
<l bl oy, Vie{l, o mp,  (13)
w,=0, Vie{l,", 7} (I-4)

Each constraint of this optimization problem plays a
regpective role in the following aspects: The inequality
(I-1) are the sufficient condition for the given prototype
patterns to be stored as asymptotically stable equilibria.
Note that this condition is similar to that by Chan and
7ak [12]. Roughly speaking, the larger %, the wider the
attraction domain of each prototype patterns. Thus, the
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maximal % must be sought under maximal left hand side
(ie., r; for every ) and minimal right hand side (i.e.,
[lw]). Both (I-2) and (I-3) come from parameterization
of the solution space. As mentioned in [3], these
guidelines yield desired properties including the
asymmetry of weight matrix, no automatic storage of
negative prototype patterns as asymptotically stable
equilibria, and provisions to minimize the number of
spurious states. The zero diagonal condition (I-4)
guaraniees no other equilibria in close proximity (i.e.
HD=1) of the prototype patterns (Theorem 1).

This resulted optimization problem satisfies the desired
properties with only 2z parameters. The number of
parameters is still sufficient to represent the solution
space and to be searched. Additionally we step forward
to propose another parameterization in which the
conspicuous difference is in the shape and the number of
parameter, which is dramatically reduced to only two
pararmeters.

3.1.3 Transformation of formulation (SDP I)

In this subsection, we establish an SDP-based synthesis
procedure for the GBSB neural associative memories by
transforming the nonlinear constraint of formulation T into
LMTI's.

An LM is any constraint of the form

AD=A)+ 2, A+ -+ 2pAN0 ()

where z=[z;-zyl’ is the variable, and Ay, -, Ay
are given symmetric matrices. Since A(x)>0 and
A(y»0 imply that A((x+»/2)>0, LM (*) is a
convex constraint on the variable z. Note that multiple
LMI's AY(2)>0,--,A”(2)>0 can be expressed as the
single LMI  diag ( AV(2), -+, A% (2))>0. Thus, there is
no distinction between a set of LMI's and a single LML
It is well-known that an optimization problem with a
linear objective and LMI constraints, which is called a
semidefinite program, can be efficiently solved by interior
point methods [14-16], and a toclbox of MATLAB for
convex problems involving LMI's is now available [15].
Each of the solutions of SDPs considered in this paper
was obtained by this toolbox.

The first optimization problem (Formulation I) has
both linear and nonlinear constraints. However, the
nonlinear constraints can be easily converted to LMI's.
For i-th element of the condition (I-1), since
(210 CR2||W|* is equivalent to

270 1,2 Lyx > x T(2RW) (20 W )x, Va0,
this constraint can be reduced to
1l — (2RW) (a0l " (2RW) > 0.

Through Schur complements [14], we get the following
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LMI, which is equivalent to the above inequality,

ad, 2hW
[ZhW od, |70

Letting ¢21/(2k), we rewrite it as

0 W 71, 0
w0 ](crl,[o Ll

Thus, for all elements, we can have

T
?/V Vg ](C[Tner“flnen][ 6” 1(—)” .

Therefore, the first optimization problem (Formulation
I) can be transformed in to the following semidefinite
program (SDP 1):

With given ¢(>0), find W such that gn, is

maxinmmn,
T
st [ (I)/V V(T)/ ](c[rllel---rlnen][ 6” .9,1]
W= ([7-1191 tr rlrlen]V_B)V+
—[2‘2131 ‘-—2}19)1]([1;_ VV-‘-),
0< <18,/ < 12,

w,=0, Vie{l,,n}.

3.2 Second SDP-based Synthesis

3.2.1 Parameterization of Solution Space (Parameteriza-
tion IT)

With the same strategy of parameterization I, we pick
the bias vector » by the linear combination of prototype
patterns.

Next, we substitute the parameter matrices D and 4
with

D= 7'-1[ ns
'/'l' = I3 I nr

respectively. Finally, by applying 4, D, and A to
ALGORITHM, we get the weight mafrix
(Parameterization II),
W=(a V=BV —(l,— VV"),

st 0<<min b, max [bl{z;.

3.2.2 Formulation of Parameterization (Formulation II)

Without loss of generality, by applying the same
procedure of parameterization I, we have ;-th element
of the p-th prototype pattern,

(WP ;=0 —b.

Therefore, the left hand side of Theorem 2 is to be
recalled as
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( i‘lwzjv}”)-i-bi)vi(")
=
( (»_ bz+ bz)vz(p)

oy,
7 (>0)

As parameterization I, we establish

Maximize ( ,Z} wiv,” + bl)vf") o0,
Vie{l, -, n}, Vo {i, -, m

= Maximize ;(>0)

Finally, the backeround results allow us to find the
GBSB performing optimally by solving the second
constrained optimization problem (Formulation II):

Find 7, and z, which maximize

st 7> 2n||WI,

W=(nV-BV —{l,— VV7),
0 y<{ min | b,|, max &)<,
w,;=0, Vie{l,-,n}.

Until now, by parameterizing the solution space of a
known algorithm for the synthesis of GBSB-based
associative memories, we have represented the solution
space which was originally tcpresented with 2x2+ %
parameters as 2» and two parameters (Parameterization [
and II). In addition, we have recast the synthesis problem
mto two constrained optimization problems (Formulation [
and II).

3.2.3 Transformation of Parameterization Il (SDP II)

Without loss of generality, apply the same SDP
trasformation procedure of GBSB I we get the second
SDP problem as follows (SDP II):

With given ¢{(>0), find W such that 7, is maximum,

0 W I,

W0 ]‘(”1[ 0 ?
W=(aV-BV —(l,— VV"),
0<<min b, max,|b|<{zs,
wy=0, Vie{l, -, n}.

s.t.

IV. Experiments and Results

To show the accuracy and performance of the
proposed method, we consider a design example. The
dimension of the GBSB model o be considered is
n=10, and we have stored the following five prototype
patterns:

v V=[—1+1-1+14+1+1~1+1+1+117
P =[+1+1-1-1+1—-1+1-1+1+117

¥ =[—-14+1+1+1=-1=-1+1-1+1-1]7
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vW=[+1+1—-1+1-1+1—-1+1+1+11"
v =[+1-1-1~=1+1+1+1-1-1-117

Note that these prototype patterns were considered in
[9] and [12] as well. We directly obtained bias vector 5
by the linear combination of the prototype patterns as

b [+1 43 -3 +14+1+1+1—-1+3+117.

First, solving the corresponding optimization problems
(ie, Formulation I and II) along with the constant
c=2.86 and ¢=4.72, respectively, we obtain the
following results:

For Formulation I, we get the parameters, z,,’s and

’

Tg, 8,

ry;=[ 0.999999 2.999999 2.999999 0.999999 0.999999
0.999999 0.999999 0.959999 2.999999 0.999999],

Ty = [ 1.070571 3.236817 3.918518 1.892539 1.070571
1.835188 1.830398 1.830398 3.236817 1.0133581.

Note that these parameters satisfy
18| < e, Vie{l, -, u}.
For Formulation II, we get the two parameters, r, and r,,
7 ={.999999,
79 = 3.292719.

Note again that these parameters satisfy r,< min,5,,
max | b{< v, because and max |b|=3.
Table I and II show the weight matrix W obtained by
Formulation I and II, respectively.

Next, to evaluate the performance of the resulting
GBSB, we performed simulations for all possible initial
binary states, and summarized the information on the
domain of attraction for each prototype pattern in Table
OI and IV for SDP I and SDP II, respectively. The
entries of the table should be interpreted as follows: "(the
entry corresponding to ¥ and HD=q)=35" indicates
that, out of all possible initial binary states with
Hamming distance 4, sof them converge to the
prototype pattern »‘”. Obviously, having large entries in
the table indicates a desirable feature with respect to the
domains of attraction for prototype pattems. For the
comparison purpose, we performed the same simulations
with ¢=0.3 for the GBSB of [12], and the results are
shown in Table V. Note that the entries in the first
column of Table UI-V are all one, which shows that each
of the given prototype patterns is stored as a stable
equilibrium point in all three cases. Also, note that
entries in Table III and IV are comparable to thosc in
Table V.

To compare the recall quality of these associative
memories, we investigated how many initial condition
vectors converged to the nearest prototype pattern in the
sense of Hamming distance. As shown in Table VI, our

min ;| b]=1
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systems have no spurious states, which are defined as
asymptotically stable equilibrium points not corresponding
to stored patterns. This result has shown that each
trajectory starting from an initial binary state converges
to a prototype pattern (Note that the global stability was
not explicitly considered in Formulation I and II). In the
simulations for each SDP of this paper, about 87 and 84
percent of initial binary patterns converged to the closest
prototype pattern and about 80 percent in the case of the
GBSB of [12]. Although the difference in performance is
not outstanding, the result of the proposed method is
better. It should be noted that our systems requires only
2n and/or two parameters to synthesize associative
memories, while on the other hand, Chan and Zak's
system requires the whole weight matrix as the solution
space (i.e., »° parameters).

In addition, the GBSBs of this paper are comparable
to other models in the following aspects:
(1) Since the resulted weight is automatically asymmetric,

we can implement more easily with  this
parameterization than other structures such as Perfetti
[9], which has symmetric constraints of weight
matrices.

(2) Eigenstructure method [4] does heuristic search with
only two parameters, which result in small search
space and lack in fine tuning mechanism. Although
SDP Il is also required to search two parameters,
better performance can be expected through employing
systematic synthesis strategies shown in Section IIL
Moreover, the fine tuning effect by increased
parameters results in the performance enhancement,
thus the performance of SDP I is somewhat better
than that of SDP IL

(3) Lillo et al. [3] computed the weight matrix by
choosing not less than 2x° parameters and Perfetti [9]
searched the whole solution space to get optimal
associative memories. So the search space is too large
to search as the dimension of the system increases.
This makes it difficult implementing  large
associative memories in practical aspect, whereas our

9 and/or

in

systems can overcome this problem with
two parameters.

V. Concluding Remarks

in this paper we have proposed a novel synthesis
method for the optimally performing neural associative
memories based on the GBSB model. Particularly, the
proposed methods have creatively incorporated such
synthesis strategies as qualitative analysis of the GBSB
model so as to store a set of prototype patterns as stable
equilibria, reasonable parameterization of the solution
space to reduce the increasing mumber of parameters to
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be searched, formulation of the synthesis problem as
constrained optimization problems to apply optimization
methods for finding parameter values, and recast of these
optimizations into SDPs to find the global optimum
cfficiently with available interior point algorithms. In
addition, we have illustrated a guideline to find the
performance index directly related to the extent of the
attraction domains, to get the reduced computational
complexity apt for practical application. Through these
we have presented a valuable alternative to the previous
heuristic or analytic synthesis methods.

The GBSBs designed by the proposed method have
many desirable features: Each prototype pattern can be
surely stored as an asymptotically slable equilibrium
point; a performance index closely related to the size of
domains of attraction for prototype patterns is optimized,
thus large attraction basin is expected for each prototype
pattern; near the stored prototype patterns, there are no
spurious states. A design example was presented to
tllustrate the proposed method, and the resulting GBSB
validated all of the above advantages by outperforming
the associative memories designed by other techmiques.
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Appendix

Table 1. The weight matrix W obtained by SDP I

0000 0443 Q009 076 0655 0335 025 025 0443 0351
0440 0000 7P 0171 D440 -1.851 060 060 1313 1761
-13% 0298 0000 1.050 -13% 0906 0749 0749 028 -152
068 0166 058 00000689 0197 0368 0568 0166 0136
0635 04483 0009 070 00000335 025 0225 0443 0551

0068 0613 0430 0204 0068 0000 0636 0636 -0613 -0272

0052 0181 038 -06 002 072 (000 0732 0181 0367
002 0181038 0546 002 072 0732 0000 0181 0367
0440 1313 079 0171 0440 -1.85] 0G0 060 Q000 1761

0163 0100 0312 0638 0163 0830 085 085 -0100 0000

Table 2. The weight matrix W obtained by SDP II

0.000 0518 040 -1240 -1.277 022 0053 Q63 0518 0814
0374 0000 0940 Q191 0374 -16%6 0751 0751 Q55 1497
0753 0dP 000 108 0753 000 0860 080 060 -129
098 0427 0519 00000986 0305 0675 0675 0427 0330
-1.277 0518 0499 -1240 0.000 022 008 0093 0518 0814

0142 Q737 089 0615 0142 0000 -0784 Q784 -0737 0568

0178 -0082 0301 0658 0178 0877 0000 -1.290 0082 0714
Q178 Q082 -0301 0658 0178 0877 -1200 0000 002 Q714
0374 0355 0%0 0191 037 -168 -0751 0751 0000 1457

0433 0209 0119-0985 0433 -1314-1366 13660200 0000

|

Table 3. Domains of attraction for SDP 1

N 0 | 1 2 | 3| 4
Y 1 8 | 29 | 49 | 39
o 1 10 | 40 | 79 | 69
@ 1 10 | 43 | 75 | 44
e 1 10 | 41 | 80 | 72
& 1 10 | 41| 75 | 57

Table 4. [VDomains of attraction for SDP Il

vector HD 0 1 2 3 4
2@ 1 {10 | 43 | 80 | 78

p? 1 |10 | 38| 73| 78

@ 1 | 10 | 43 | 86 | 40

0 1 8 | 27 | 50 | 34

& 1 10 | 40 | 73 | 61

Table 5. Domains of attraction for the GBSB model by Chan

and Zak [12]
vectar HD 0 1 2 3 4
ey 1 9 | 30 | 58 | 81
o@ 1 | 10 38| 8 | 8
o® 1 | 10 | 43 | 67 | 43
@ 1 8 | 32 | 67 | 60
»® 1 |10 | 41 | 55 | 37
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Table 6. Comparisons of the GBSB models (A comparison of
convergence from initial binary patterns)

# of spurious |# of the correct
Model
patterns states
SDOP 1 0 887
SDP 11 0 859
Chan and Zak [12] 0 820
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