• 제목/요약/키워드: Optimization of Advanced Treatment Process

검색결과 37건 처리시간 0.028초

고합금 공구강의 최적 오스테나이트 처리 온도 결정 (Determination of Optimal Austenitizing Temperature in High-Alloyed Tool Steels)

  • 박동성;전중환;이민하;이석재
    • 열처리공학회지
    • /
    • 제30권4호
    • /
    • pp.156-163
    • /
    • 2017
  • In the present study, we investigated the optimal austenitizing temperature of high-alloyed tool steels from an industrial point of view. Austenitizing temperatures for manufacturing 25 commercial tool steels were surveyed with their alloy compositions. The relationship between the austenitizing temperatures and the critical equilibrium temperatures by thermodynamic-based calculation was analyzed and a correlation was found. Based on the austenitizing temperatures of 25 commercial tool steels and the thermodynamic calculation results, we proposed a simple equation to predict an optimal austenitizing temperature to achieve superior mechanical properties of high-alloyed tool steels. The applicability of the proposed equation was experimentally validated with a new developed tool steel.

중수 재이용을 위한 오존 고도산화 및 세라믹 분리막 일체형 공정의 최적화 연구 (Optimization of an Advanced Oxidation with Ozone and Ceramic Membrane Integrated Process for Greywater Reuse)

  • 이종훈;노호정;박광덕;우윤철
    • 한국물환경학회지
    • /
    • 제37권6호
    • /
    • pp.433-441
    • /
    • 2021
  • The aim of this study was to optimize the ozonation and ceramic membrane integrated process for greywater reclamation. The integrated process is a repeated sequential process of filtration and backwash with the same ceramic membrane. Also, this study used ozone and oxygen gas for the backwashing process to compare backwashing efficiency. The study results revealed that the optimum filtration and backwash time for the process was 10 minutes each when comparing the filtrate flow and membrane recovery rate. The integrated process was operated at three different operating conditions with i) 10 minutes for filtration and 10 minutes for ozonation, ii) 10 minutes for filtration and 10 minute for oxygen aeration, and iii) continuous filtration without any aeration for synthetic greywater. The integrated process with ozone backwashing could produce 0.55 L/min of filtrate with an average of 18.42% permeability recovery, while the oxygen backwashing produced 0.47 L/min and 6.26%, respectively. And without any backwashing, the integrated process could produce 0.29 L/min. This shows that the ozone backwash process is capable of periodically recovering from membrane fouling. The resistance of the fouled membrane was approximately 34.4% for the process with ozone backwashing, whereas the resistance was restored by 10.8% for the process with oxygen backwashing. Despite the periodical ozone backwashing and chemical cleaning, irreversible fouling gradually increased approximately 3 to 4%. Approximately 97.6% and 15% turbidity and TOC were removed by ceramic membrane filtration, respectively. Therefore, the integrated process with ozonation and ceramic membrane filtration is a potential greywater treatment process.

시공간 동시분할 공정 시뮬레이션을 통한 질소 및 인 제거 최적화 방안 (Optimization of Nitrogen and Phosphorus Removal of Temporal and Spatial Isolation Process by Model Simulation System)

  • 유동진;장덕;신형수;박상민;홍기호;김수영;김명준
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.206-215
    • /
    • 2007
  • The objective of this study was to establish the optimal system operating strategies for nitrogen and phosphorus removal through model simulation system built for advanced wastewater treatment targeting on simultaneous temporal/special phase isolation BNR process. The simulation system was built with unit process modules using object modules in GPS-X code. The system was well verified by field experiment data. Simulation study was carried out to investigate performance response to design and operation parameters, i.e. hydraulic retention time (HRT), solids retention time (SRT), and cycle time. The process operated at HRTs of 10~15 hours, longer SRTs, and cycle time of 2 hours showed optimal removal of nitrogen. The HRTs of 10~15 hours, SRTs of 20~25 days, and longer cycle time was optimal for phosphorus removal. Both simulation and field studies showed that optimal operating strategies satisfying both the best nitrogen and phosphorus removals include HRTs ranged 10~15 hours, SRTs ranged 20~25 days, and cycle times of 4~8 hours. The simulation system with modularization of generalized components in BNR processes was, therefore, believed to be a powerful tool for establishing optimal strategies of advanced wastewater treatment.

고도정수처리 신(新) 공정(PMR)개발 및 처리효율 평가 (Development of a New Advanced Water Treatment Process (PMR) and Assessment of Its Treatment Efficiency)

  • 안효원;노수홍;권오성;박용효;왕창근
    • 멤브레인
    • /
    • 제18권2호
    • /
    • pp.157-167
    • /
    • 2008
  • 수돗물 공급에 있어서의 미량 유기물질 및 맛냄새 제거의 중요도가 높아짐에 따라 오존, GAC 및 PAC 등 고도 정수처리공정의 도입이 지속적으로 증대되고 있다. 하지만, 원수의 수질악화, 새로운 오염물질의 출현 등에 의해 기존의 고도처리공정이 향후에도 충분한 대안이 된다고 확신하기는 어려운 실정이다. 본 연구에서는 고농도의 분말활성탄을 slurry blanket의 형태로 체류시킨다는 새로운 개념의 접촉조를 구상, 막여과조와 연계하여 하나의 공정으로 완성하였다. 한강원수를 대상으로 $80m^3/일$ 규모의 pilot plant를 이용, 유기물질 및 2-MIB, Geosmin에 대한 제거특성을 살펴본 결과 DOC의 경우 운영초기 90% 이상, 안정화된 이후에도 $70{\sim}80%$ 내외의 높은 처리효율을 나타내었으며 2-MIB Geosmin의 경우 검출한계 이하로 제거되었다. 본 공정은 1년 이상의 장기간의 고도처리 효율 검증 및 안정된 PAC 접촉조의 운영방안 등 공정 최적화를 위한 추가적인 연구가 필요한 실정이나 기존의 고도처리에 비해 컴팩트하면서 높은 처리효율을 안정적으로 나타냄으로써 맛냄새물질을 비롯한 미량 오염물질을 제거하기 위한 대안공정으로서의 높은 가능성을 확인하였다.

초순수 생산을 위한 최적공정 조합 평가 (A Study of the Optimization Process Combination on the Ultrapure Water Treatment System)

  • 이경혁;김동규;권병수;정관수
    • 대한환경공학회지
    • /
    • 제38권7호
    • /
    • pp.364-370
    • /
    • 2016
  • 본 연구에서는 초순수 생산을 위한 개별공정들의 특성을 고려하여 공정조합 최적화 방안을 결정하는 기법을 연구하였다. 산업 활동에 사용하는 공업용수 중 고도의 기술집합 산업에서 요구되는 고순도 용수인 초순수를 생산하는 공정은 여과, 이온교환, 역삼투, 탈기, 자외선 산화 등 이 있다. 초순수 공정은 다양한 15~20개 정도의 수처리 단위 공정이 조합을 이루고 있다. 본 연구에서는 초순수 생산 모형플랜트를 운영하여 다양한 처리 공정의 조합을 통해 수질 및 경제성을 고려하여 평가하였다. 평가된 19종류의 공정조합 중 11개 공정조합이 목표로 하는 최종 수질을 만족했다. 이러한 11종의 공정조합에 대해 안정성과 경제성을 평가하였다.

열처리 효과에 따른 SnO2 기반 수소가스 센서의 특성 최적화 (Optimization of SnO2 Based H2 Gas Sensor Along with Thermal Treatment Effect)

  • 정동건;이준엽;권진범;맹보희;김영삼;양이준;정대웅
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.348-352
    • /
    • 2022
  • Hydrogen gas (H2) which is odorless, colorless is attracting attention as a renewable energy source in varions applications but its leakage can lead to disastrous disasters, such as inflammable, explosive, and narcotic disasters at high concentrations. Therefore, it is necessary to develop H2 gas sensor with high performance. In this paper, we confirmed that H2 gas detection ability of SnO2 based H2 gas sensor along with thermal treatment effect of SnO2. Proposed SnO2 based H2 gas sensor is fabricated by MEMS technologies such as photolithgraphy, sputtering and lift-off process, etc. Deposited SnO2 thin films are thermally treated in various thermal treatement temperature in range of 500-900 ℃ and their H2 gas detection ability is estimatied by measuring output current of H2 gas sensor. Based on experimental results, fabricated H2 gas sensor with SnO2 thin film which is thermally treated at 700 ℃ has a superior H2 gas detection ability, and it can be expected to utilize at the practical applications.

An Example of Radioactive Waste Treatment System Optimization Using Goal Programming

  • Yang, Jin-Yeong;Lee, Kun-Jai;Young Koh;Mun, Ju-Hyun;Baek, Ha-Chung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(2)
    • /
    • pp.237-243
    • /
    • 1997
  • The ultimate object of our study is to minimize the release of radioactive material into the environment and to maximize the treatable amount of the generated wastes. In planning the practical operation of the system, however, the operating cost, Process economics and technical flexibility must also be considered. For dealing with these multiple criteria decision making Problems, we used a foal programming which is a kind of multi-objective linear programming. This method requires the decision maker to set goals for each objective that one wishes to attain.

  • PDF

호소수 탁도변화 대응을 위한 고플럭스 막여과공정의 Pilot 연구 (A pilot study of high flux membrane process for responding to influent turbidity changes in reservoir water)

  • 강준석;성자영;유제완;김형수;이재규;전민혁;천지훈
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.393-402
    • /
    • 2020
  • In the membrane process, it is important to improve water treatment efficiency to ensure water quality and minimize membrane fouling. In this study, a pilot study of membrane process using reservoir water was conducted for a long time to secure high flux operation technology capable of responding to influent turbidity changes. The raw water and DAF(Dissolved Air Flotation) treated water were used for influent water of membrane to analyze the effect of water quality on the TMP (Trans Membrane Pressure) and to optimize the membrane operation. When the membrane flux were operated at 70 LMH and 80 LMH under stable water quality conditions with an inlet turbidity of 10 NTU or less, the TMP increase rates were 0.28 and 0.24 kPa/d, respectively, with minor difference. When the membrane with high flux of 80 LMH was operated for a long time under inlet turbidity of 10 NTU or more, the TMP increase rate showed the maximum of 43.5 kPa/d. However, when the CEB(Chemically Enhanced Backwash) cycle was changed from 7 to 1 day, it was confirmed that the TMP increase rate was stable to 0.23 kPa/d. As a result of applying pre-treatment process(DAF) on unstability water quality conditions, it was confirmed that the TMP rise rates differed by 0.17 and 0.64 kPa/d according to the optimization of the coagulant injection. When combined with coagulation pretreatment, it was thought that the balance with the membrane process was more important than the emphasis on efficiency of the pretreatment process. It was considered that stable TMP can be maintained by optimizing the cleaning conditions when the stable or unstable water quality even in the high flux operation on membrane process.

수돗물 신뢰도 향상을 위한 품질 인증 제도 도입 (Introduction of Water Quality Certification System for Confidence Improvement of Tap Water)

  • 김진근
    • 상하수도학회지
    • /
    • 제29권2호
    • /
    • pp.155-163
    • /
    • 2015
  • Many advanced treatment processes have been introduced to WTPs, however, the consumer confidence on tap water is still low and the percentage of drinking water directly from the tap is less than 2 %. One of the methods to improve the credibility of tap water is to introduce a drinking water certification system. By introducing the system, water treatment processes can be optimized, which in turn, can significantly improve drinking water quality. In this paper, 6 water quality parameters(i.e., turbidity, CT, residual chlorine, geosmin, 2-MIB, Mn) which have significant influences on tap water quality and consumer confidence were identified, and their recommended guidelines were proposed. 3-Star or 5-Star certification can be awarded to the WTPs which have met the certification criteria. The drinking water certification system can be carried out as a voluntary program among drinking water suppliers.

Response surface analysis of removal of a textile dye by a Turkish coal powder

  • Khataee, Alireza;Alidokht, Leila;Hassani, Aydin;Karaca, Semra
    • Advances in environmental research
    • /
    • 제2권4호
    • /
    • pp.291-308
    • /
    • 2013
  • In the present study, an experimental design methodology was used to optimize the adsorptive removal of Basic Yellow 13 (BY13) using Turkish coal powder. A central composite design (CCD) consisting of 31 experiments was employed to evaluate the simple and combined effects of the four independent variables, initial dye concentration (mg/L), adsorbent dosage (g/L), temperature ($^{\circ}C$) and contact time (min) on the color removal (CR) efficiency (%) and optimizing the process response. Analysis of variance (ANOVA) showed a high coefficient of determination value ($R^2=0.947$) and satisfactory prediction of the polynomial regression model was derived. Results indicated that the CR efficiency was not significantly affected by temperature in the range of $12-60^{\circ}C$. While all other variables significantly influenced response. The highest CR (95.14%), estimated by multivariate experimental design, was found at the optimal experimental conditions of initial dye concentration 30 mg/L, adsorbent dosage 1.5 g/L, temperature $25^{\circ}C$ and contact time 10 min.