DOI QR코드

DOI QR Code

Optimization of SnO2 Based H2 Gas Sensor Along with Thermal Treatment Effect

열처리 효과에 따른 SnO2 기반 수소가스 센서의 특성 최적화

  • Jung, Dong Geon (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Junyeop (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kwon, Jinbeom (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Maeng, Bohee (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Young Sam (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Yang, Yi Jun (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Jung, Daewoong (Advanced Mechatronics Group, Korea Institute of Industrial Technology (KITECH))
  • 정동건 (한국생산기술연구원 첨단메카트로닉스그룹) ;
  • 이준엽 (한국생산기술연구원 첨단메카트로닉스그룹) ;
  • 권진범 (한국생산기술연구원 첨단메카트로닉스그룹) ;
  • 맹보희 (한국생산기술연구원 첨단메카트로닉스그룹) ;
  • 김영삼 (한국생산기술연구원 첨단메카트로닉스그룹) ;
  • 양이준 (한국생산기술연구원 첨단메카트로닉스그룹) ;
  • 정대웅 (한국생산기술연구원 첨단메카트로닉스그룹)
  • Received : 2022.08.28
  • Accepted : 2022.09.22
  • Published : 2022.09.30

Abstract

Hydrogen gas (H2) which is odorless, colorless is attracting attention as a renewable energy source in varions applications but its leakage can lead to disastrous disasters, such as inflammable, explosive, and narcotic disasters at high concentrations. Therefore, it is necessary to develop H2 gas sensor with high performance. In this paper, we confirmed that H2 gas detection ability of SnO2 based H2 gas sensor along with thermal treatment effect of SnO2. Proposed SnO2 based H2 gas sensor is fabricated by MEMS technologies such as photolithgraphy, sputtering and lift-off process, etc. Deposited SnO2 thin films are thermally treated in various thermal treatement temperature in range of 500-900 ℃ and their H2 gas detection ability is estimatied by measuring output current of H2 gas sensor. Based on experimental results, fabricated H2 gas sensor with SnO2 thin film which is thermally treated at 700 ℃ has a superior H2 gas detection ability, and it can be expected to utilize at the practical applications.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의 지원을 받아 수행된 연구임(2020-DD-UP-0348). 본 연구는 대한민국 정부(산업통상자원부 및 방위사업청) 재원으로 민군협력진흥원에서 수행하는 민군기술협력사업의 연구비 지원으로 수행되었습니다(과제번호 21-SF-BR-05). 본 논문은 한국생산기술연구원 기관주요사업의 지원으로 수행한 연구임 (Kitech UI-22-0016).

References

  1. S. D. Han, "Review and new trends of hydrogen gas sensor technologies", J. Sens. Sci. Technol., Vol. 19, No. 2, pp. 67-86, 2010. https://doi.org/10.5369/JSST.2010.19.2.067
  2. I. H. Kadhim, H. A. Hassan, and Q. N. Abdullah, "Hydrogen Gas Sensor Based on Nanocrystalline SnO2 Thin Film Grown on Bare Si Substrates", Nanomicro Lett., Vol. 8, No. 1, pp. 20-28, 2016.
  3. M. S. Jo, K. H. Kim, K. W. Choi, J. S. Lee, J. Y. Yoo, S. H. Kim, H. Jin, M. H. Seo, and J. B. Yoon, "Wireless and linear hydrogen detection up to 4% with high sensitivity through phase transition-inhibited Pd nanowires", ACS Nano., Vol, 16, No. 8, pp. 11957-11967, 2022. https://doi.org/10.1021/acsnano.2c01783
  4. Q. Ren, Y-Q. Cao, D. Arulraj, C. Liu, Di Wu, W. M. Li, and A. D. Li, "Review-resistive-type hydrogen sensors based on zinc oxide nanostructures", J. Electrochem. Soc., Vol. 167, No. 6, pp. 067528-067541, 2020. https://doi.org/10.1149/1945-7111/ab7e23
  5. I. H. Kadhim, H. A. Hassan, and F. T. Ibrahim, "Hydrogen gas sensing based on nanocrystalline SnO2 thin films operating at low temperatures", Int. J. Hydrog. Energy., Vol. 45, No. 46, pp. 25599-25607, 2020. https://doi.org/10.1016/j.ijhydene.2020.06.136
  6. Y. Chen, X. Wang, C. Shi, L. Li, H. Qin, and J. Hu, "Sensing mechanism of SnO2(1 1 0) surface to H2: Density functional theory calculations", Sens. Actuators B chem., Vol. 220, pp. 279-287, 2015. https://doi.org/10.1016/j.snb.2015.05.061
  7. A. Shanmugasundaram, P. Basak, L. Satyanarayana, and S. V. Manorama, "Hierarchical SnO/SnO2 nanocomposites: Formation of in situ p-n junctions and enhanced H2 sensing", Sens. Actuators B chem., Vol. 185, pp. 265-273, 2013. https://doi.org/10.1016/j.snb.2013.04.097
  8. S. H. Sun, G. W. Meng, G. X. Zhang, T. Gao, B. Y. Geng, L. D. Zhang, and J. Zuo, "Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders", Chem. Phys. Lett., Vol. 376, No. 1-2, pp. 103-107, 2003. https://doi.org/10.1016/S0009-2614(03)00965-5
  9. D. Leng, L. Wu, H. Jiang, Y. Zhao, J. Zhang, W. Li, and L. Feng, "Preparation and Properties of SnO2 Film Deposited by Magnetron Sputtering", Int. J. Photoenergy., Vol. 2012, pp. 1-6, 2012.
  10. Y. Liu, E. Koep, and M. Liu, "A Highly Sensitive and Fast-Responding SnO2 Sensor Fabricated by Combustion Chemical Vapor Deposition", Chem. Mater., Vol. 17, No. 15, pp. 3997-4000, 2005. https://doi.org/10.1021/cm050451o
  11. B. K. Min and S. D. Choi, "SnO2 thin film gas sensor fabricated by ion beam deposition", Sens. Actuators B Chem., Vol. 98, No. 2-3, pp. 239-246, 2004. https://doi.org/10.1016/j.snb.2003.10.023
  12. A. F. Khan, M. Mehmood, A. M. Rana, and M. T. Bhatti, "Effect of annealing on electrical resistivity of rf-magnetron sputtered nanostructured SnO2 thin films", Appl. Surf. Sci., Vol. 255, Vol. 20, pp. 8562-8565, 2009. https://doi.org/10.1016/j.apsusc.2009.06.020
  13. S. Mehraj, M. S. Ansari, and Alimuddin, "Annealed SnO2 thin films: Structural, electrical and their magnetic properties", Thin Solid Films, Vol. 589, pp. 57-65, 2015. https://doi.org/10.1016/j.tsf.2015.04.065
  14. N. M. Ahmed, F. A. Sabah, H. I. Abdulgafour, A. Alsadig, A. Sulieman, and M. Alkhoaryef, "The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement", Results Phys., Vol. 13, pp. 102159-102165, 2019. https://doi.org/10.1016/j.rinp.2019.102159
  15. Y. Yang, B. Maeng, D. G. Jung, J. Lee, Y. Kim, J. B. Kwon, H. K. An, and D. Jung, "Annealing effects on SnO2 thin film for H2 gas sensing", Nanomaterials, Vol. 12, No. 18, pp. 3227-3239, 2022. https://doi.org/10.3390/nano12183227