• 제목/요약/키워드: Optimization algorithm

검색결과 5,736건 처리시간 0.031초

A Hybridization of Adaptive Genetic Algorithm and Particle Swarm Optimization for Numerical Optimization Functions

  • Yun, Young-Su;Gen, Mitsuo
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2008년도 추계 공동 국제학술대회
    • /
    • pp.463-467
    • /
    • 2008
  • Heuristic optimization using hybrid algorithms have provided a robust and efficient approach for solving many optimization problems. In this paper, a new hybrid algorithm using adaptive genetic algorithm (aGA) and particle swarm optimization (PSO) is proposed. The proposed hybrid algorithm is applied to solve numerical optimization functions. The results are compared with those of GA and other conventional PSOs. Finally, the proposed hybrid algorithm outperforms others.

  • PDF

An Improved Harmony Search Algorithm and Its Application in Function Optimization

  • Tian, Zhongda;Zhang, Chao
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1237-1253
    • /
    • 2018
  • Harmony search algorithm is an emerging meta-heuristic optimization algorithm, which is inspired by the music improvisation process and can solve different optimization problems. In order to further improve the performance of the algorithm, this paper proposes an improved harmony search algorithm. Key parameters including harmonic memory consideration (HMCR), pitch adjustment rate (PAR), and bandwidth (BW) are optimized as the number of iterations increases. Meanwhile, referring to the genetic algorithm, an improved method to generate a new crossover solutions rather than the traditional mechanism of improvisation. Four complex function optimization and pressure vessel optimization problems were simulated using the optimization algorithm of standard harmony search algorithm, improved harmony search algorithm and exploratory harmony search algorithm. The simulation results show that the algorithm improves the ability to find global search and evolutionary speed. Optimization effect simulation results are satisfactory.

A cross-entropy algorithm based on Quasi-Monte Carlo estimation and its application in hull form optimization

  • Liu, Xin;Zhang, Heng;Liu, Qiang;Dong, Suzhen;Xiao, Changshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.115-125
    • /
    • 2021
  • Simulation-based hull form optimization is a typical HEB (high-dimensional, expensive computationally, black-box) problem. Conventional optimization algorithms easily fall into the "curse of dimensionality" when dealing with HEB problems. A recently proposed Cross-Entropy (CE) optimization algorithm is an advanced stochastic optimization algorithm based on a probability model, which has the potential to deal with high-dimensional optimization problems. Currently, the CE algorithm is still in the theoretical research stage and rarely applied to actual engineering optimization. One reason is that the Monte Carlo (MC) method is used to estimate the high-dimensional integrals in parameter update, leading to a large sample size. This paper proposes an improved CE algorithm based on quasi-Monte Carlo (QMC) estimation using high-dimensional truncated Sobol subsequence, referred to as the QMC-CE algorithm. The optimization performance of the proposed algorithm is better than that of the original CE algorithm. With a set of identical control parameters, the tests on six standard test functions and a hull form optimization problem show that the proposed algorithm not only has faster convergence but can also apply to complex simulation optimization problems.

A Novel Hybrid Intelligence Algorithm for Solving Combinatorial Optimization Problems

  • Deng, Wu;Chen, Han;Li, He
    • Journal of Computing Science and Engineering
    • /
    • 제8권4호
    • /
    • pp.199-206
    • /
    • 2014
  • The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.

A Novel Optimization Algorithm Inspired by Bacteria Behavior Patterns

  • 정성훈;김태건
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.392-400
    • /
    • 2008
  • This paper proposes a novel optimization algorithm inspired by bacteria behavior patterns for foraging. Most bacteria can trace attractant chemical molecules for foraging. This tracing capability of bacteria called chemotaxis might be optimized for foraging because it has been evolved for few millenniums. From this observation, we developed a new optimization algorithm based on the chemotaxis of bacteria in this paper. We first define behavior and decision rules based on the behavior patterns of bacteria and then devise an optimization algorithm with these behavior and decision rules. Generally bacteria have a quorum sensing mechanism that makes it possible to effectively forage, but we leave its implementation as a further work for simplicity. Thereby, we call our algorithm a simple bacteria cooperative optimization (BCO) algorithm. Our simple BCO is tested with four function optimization problems on various' parameters of the algorithm. It was found from experiments that the simple BCO can be a good framework for optimization.

Nonlinear optimization algorithm using monotonically increasing quantization resolution

  • Jinwuk Seok;Jeong-Si Kim
    • ETRI Journal
    • /
    • 제45권1호
    • /
    • pp.119-130
    • /
    • 2023
  • We propose a quantized gradient search algorithm that can achieve global optimization by monotonically reducing the quantization step with respect to time when quantization is composed of integer or fixed-point fractional values applied to an optimization algorithm. According to the white noise hypothesis states, a quantization step is sufficiently small and the quantization is well defined, the round-off error caused by quantization can be regarded as a random variable with identically independent distribution. Thus, we rewrite the searching equation based on a gradient descent as a stochastic differential equation and obtain the monotonically decreasing rate of the quantization step, enabling the global optimization by stochastic analysis for deriving an objective function. Consequently, when the search equation is quantized by a monotonically decreasing quantization step, which suitably reduces the round-off error, we can derive the searching algorithm evolving from an optimization algorithm. Numerical simulations indicate that due to the property of quantization-based global optimization, the proposed algorithm shows better optimization performance on a search space to each iteration than the conventional algorithm with a higher success rate and fewer iterations.

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF

Simple Bacteria Cooperative Optimization with Rank Replacement

  • 정성훈
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.432-436
    • /
    • 2009
  • We have developed a new optimization algorithm termed simple bacteria cooperative optimization (sBCO) based on bacteria behavior patterns [1]. In [1], we have introduced the algorithm with basic operations and showed its feasibility with some function optimization problems. Since the sBCO was the first version with only basic operations, its performance was not so good. In this paper, we adopt a new operation, rank replacement, to the sBCO for improving its performance and compare its results to those of the simple genetic algorithm (sGA) which has been well known and widely used as an optimization algorithm. It was found from the experiments with four function optimization problems that the sBCO with rank replacement was superior to the sGA. This shows that our algorithm can be a good optimization algorithm.

순회 판매원 문제 해결을 위한 개미집단 최적화 알고리즘 개선 (Improvement of Ant Colony Optimization Algorithm to Solve Traveling Salesman Problem)

  • 장주영;김민제;이종환
    • 산업경영시스템학회지
    • /
    • 제42권3호
    • /
    • pp.1-7
    • /
    • 2019
  • It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.

Weight optimization of coupling with bolted rim using metaheuristics algorithms

  • Mubina Nancy;S. Elizabeth Amudhini Stephen
    • Coupled systems mechanics
    • /
    • 제13권1호
    • /
    • pp.1-19
    • /
    • 2024
  • The effectiveness of coupling with a bolted rim is assessed in this research using a newly designed optimization algorithm. The current study, which is provided here, evaluates 10 contemporary metaheuristic approaches for enhancing the coupling with bolted rim design problem. The algorithms used are particle swarm optimization (PSO), crow search algorithm (CSA), enhanced honeybee mating optimization (EHBMO), Harmony search algorithm (HSA), Krill heard algorithm (KHA), Pattern search algorithm (PSA), Charged system search algorithm (CSSA), Salp swarm algorithm (SSA), Big bang big crunch optimization (B-BBBCO), Gradient based Algorithm (GBA). The contribution of the paper isto optimize the coupling with bolted rim problem by comparing these 10 algorithms and to find which algorithm gives the best optimized result. These algorithm's performance is evaluated statistically and subjectively.